089194 -
Complessità nei sistemi e nelle reti |
Complessità nei
sistemi e nelle reti
Il corso ha lo scopo di illustrare metodi e algoritmi
per l'analisi di sistemi complessi, vale a dire
sistemi composti da un numero elevato di unità tra loro
interagenti. Rientrano in questa categoria, a titolo di
esempio, le reti sociali e quelle
infrastrutturali per la distribuzione di energia,
materia o informazione, le reti di transazioni
economico-finanziarie e quelle di interazione
biologica (p.e. proteine e processi metabolici),
gli ecosistemi e le flotte di agenti
(naturali o artificiali) coordinati. Il corso
illustra dapprima un insieme di strumenti per l'analisi
e la caratterizzazione della struttura delle reti,
per poi considerare i fenomeni emergenti dall'interazione
di sistemi dinamici attraverso la rete.
Programma
Introduzione
allo studio della complessità nei sistemi e nelle reti
Reti complesse:
Sistemi complessi:
Prerequisiti
Sono sufficienti le nozioni apprese nei corsi di base di
matematica e di sistemi dinamici (p.e. "Fondamenti di
Automatica"). E' inoltre consigliata la frequenza a
"Teoria dei sistemi (dinamica non lineare)" oppure a
"Systems theory (nonlinear dynamics)".
Suggested readings: http://www.scholarpedia.org/article/Complex_systems | http://www.scholarpedia.org/article/Complexity
Suggested readings: SH Strogatz, Exploring complex networks, Nature 2001 | MEJ Newman, The Structure and Function of Complex Networks, SIAM Review 2003 | XF Wang, G Chen, Complex Networks: Small-World, Scale-Free and Beyond, IEEE Circuits and Systems Magazine 2003 | S Boccaletti, V Latora, Y Moreno, M Chavez, DU Hwang, Complex networks: Structure and dynamics, Physics Reports 2006
Quantifying network properties [lecture
ver. 1/10/2024]
Distance and diameter - Clustering
coefficient - Degree, strength, and degree distribution -
Correlated networks
Centralities [lecture
ver. 1/10/2024]
Degree, betweenness, closeness, eigenvector
centralities, hub/authority scores, PageRank
Suggested readings: DF Gleich, PageRank beyond the web, SIAM Review 2015
Mesoscale network
analysis [lecture
ver. 1/10/2024]
Community detection: max-modularity, random walk
methods - Quality indicators - LFR model - Core-periphery
structure: block-modeling, k-core decomposition, random
walks
Suggested readings: S Fortunato, Community detection in graphs, Physics Reports 2010 | S Fortunato, D Hric, Community detection in networks: A user guide, Physics Reports 2016 | F Della Rossa, F Dercole, C Piccardi, Profiling core-periphery network structure by random walkers, Scientific Reports 2013
Advanced topics in
network analysis [lecture ver.
24/9/2021]
Link prediction - Recommender systems - Advanced
network models
Suggested readings: L Lu, T Zhou, Link prediction in complex networks: A survey, Physica A 2011 | L Lu, M Medo, CH Yeung, YC Zhang, ZK Zhang, T Zhou, Recommender systems, Physics Reports 2012
Networks as critical
infrastructures: robustness [lecture
ver. 1/10/2024]
Tolerance to random failures and
attacks - Critical components - Cascades of failures
Suggested readings: R Albert, H Jeong, AL Barabasi, Error and attack tolerance of complex networks, Nature 2000 | AE Motter, YC Lai, Cascade-based attacks on complex networks, Physical Review E 2002
3. Complex systems
Introduction to networked dynamical systems [lecture
ver. 24/9/2021]
Suggested readings: R Pastor-Satorras, C Castellano, P Van Mieghem, A Vespignani, Epidemic processes in complex networks, Review of Modern Physics 2015 | C Piccardi, Social networks and the spread of epidemics, Lettera Matematica Int 2013
Consensus in networked multi-agent systems [lecture ver. 2/12/2021]
Suggested readings: R Olfati-Saber, JA Fax, RM Murray, Consensus and Cooperation in Networked Multi-Agent Systems, Proceedings of the IEEE 2007
Phase synchronization
and complete synchronization [lecture
ver. 13/12/2021]
Phase synchronization of coupled
oscillators - Bidirectional and unidirectional
(master/slave) coupling - Complete synchronization
Synchronization of networked oscillators [lecture ver. 25/9/2024]Suggested readings: M Rosenblum, A Pikovsky, J Kurths, C Schafer, PA Tass, Phase synchronization: from theory to data analysis, Handbook of Biological Physics, Vol. 4, Neuro-informatics, 2001 | S Boccaletti, J Kurths, G Osipov, DL Valladares, CS Zhou, The synchronization of chaotic systems, Physics Reports 2002
Suggested readings: A Arenas, A Díaz-Guilera, J Kurths, Y Moreno, C Zhou, Synchronization in complex networks, Physics Reports 2008 | tutorial on Liapunov exponentsMore resources...
Network datasets:
TEMI
D'ESAME
I temi d'esame (prova teorica) degli ultimi a.a. sono
scaricabili cliccando sulla data della prova scritta.
a.a. 2021/22 | 13/1/2022 | 31/1/2022 | 9/6/2022 | 30/6/2022 | 2/9/2022 |
a.a. 2022/23 | 19/1/2023 | 13/2/2023 | 9/6/2023 | 3/7/2023 | 4/9/2023 |
a.a. 2023/24 | 11/1/2024 | 29/1/2024 | 25/6/2024 | 22/7/2024 | 3/9/2024 |