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PHASE SYNCHRONIZATION: KURAMOTO MODEL (Kuramoto, 1984)

N "planar rotors", with phase ¢; and natural frequency w;: ddizi = w;

w;-S are random, extracted from a unimodal distribution with mean Q
Nonlinear coupling (V(i) = neighbours of i):

do;
dt

=w; + K z sin(gbj—qbl-)

JEV(D)

Synchronization can be quantified by the "order
parameter" r(t) (centre of mass of the oscillators):

N
() ® = 12 el (1)
N L
]:

e 7r(t) » 0: no synchronization

e r(t) » 1: synchronization of all rotors (=identical d¢;/dt-s)

e If r(t) tends to a nonzero value, a fraction of oscillators is
synchronized.
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Mean-field Kuramoto model

e N oscillators on a complete network

e coupling strength K = K°/N

. 0
e combining ddizl= wi+%2jsin (¢; — ¢;) with 3
r(t)e?® = %Z?’zl el®i(®) we obtain:

do;
dt

= w; + K% sin (¥ — ¢;)

The coupling term depends on the "mean phase" y.

The coupling strength K°r increases with r: positive feedback

(the largest the number of synchronized oscillators, the largest the chance to capture the
remaining ones)
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Numerical + analytical results: existence of a threshold value K,
e K% < K.: no synchronization (r(t) - 0)

e K% > K.: synchronization of larger and larger fractions of oscillators (r(¢) - 1 as
K% - )

e when r(t) » r <1, the de-synchronized oscillators are those with largest
detuning |w; — Q].
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Regular Small-world

Kuramoto model on complex networks

Regular lattices: K » o as N - o (no

synchronization) e N
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TN Heterogeneous networks (e.g., scale-free): K, = — s
\ K. - 0 in the limit N - o: hubs drive the dynamics and impose

4 7 \ synchronization
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COMPLETE SYNCHRONIZATION IN NETWORKED OSCILLATORS

Isolated nodes i (i=1,2,...,N) represent identical, autonomous, n-dimensional
dynamical systems

¥=f(x) , xeR"

Their behaviour (when isolated) is oscillatory (periodic or chaotic).

The coupling is linear (diffusive):

. d =0 is the coupling strength,
. H is a nxn nonnegative matrix (diffusion
profile) specifying which variables interact
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Example: Each node represents a geographic location (island, patch) which is the habitat of a
three-trophic food chain (resource R, consumer C, predator P).

The isolated demographic dynamics are described by the classical Rosenzweig-MacArthur

model:
R= ,/R(l_ﬁj_ﬂc
k 1+a1b1R

CZIR C— C— Cl2C p
. 1+a1b1R 1+612b2C

CZ2C
1+ Clzbzc

P=€2 P-dzP

In this case H is diagonal: it specifies which are the species that disperse and sets the relative
dispersal rates, e.g:

. only R disperses (e.g., seeds transported by the wind): H =H'= diag[l 0 O]
. only C disperses (e.g., herbivores): H:H”:diag[O 1 0]

. only P disperses (e.g., carnivores): H = H" = diag[0 0 1]

. all variables disperse, at different rates: H = H'""'=diag[l 0.1 0.01]
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The overall dynamics are governed by the N xn equations:

i =f""-d ¥ HX'Y , i=12,..N

j=1,2,..,N
where
. ifi#j, li/' zlﬁ =—a; =—a; (=-1if the link i <> j exists, 0 otherwise)

L =[l;] is the Laplacian matrix of the undirected network:

. real and symmetric (thus diagonalizable)

. all the off-diagonal entries are non-positive
. all rows have zero sum

. irreducible if the network is connected

It follows that the spectrum of L has the Im
form Re

o(L)={0=2 < A,...< Ay} I O T .
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Complete synchronization

We have complete synchronization when
WDeOy=xP@)=..=xM@)=x@1) vt

Since

@) :f(x(i))+ Zd(H(x(j) —x(i))) /

at synchronization all interaction terms dH(x(j)—x(i)) vanish: x(¢) must be a
solution of the isolated system x = f(x).

JCU) (1)

The synchronized trajectory lies in n-dimensional subspace
2. defined by

XD =x), i=12,...,N
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The synchronized solution x(¢) has N xn Liapunov exponents:

e n are the exponents of the (periodic or chaotic) attractor of x = f(x)
(perturbations within )

e the remaining (N —1)xn are related to the perturbations transversal to X

The stability of the synchronized solution x(¢) requires that all the
(N —1)xn transversal Liapunov exponents be negative.

Technically, the above condition guarantees that the synchronized
solution has a basin of attraction with positive measure (volume).
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Master stability equation - Master stability function

Since L is diagonalizable, the variational equation (linearization) around x (1) = x(t) can be
decomposed in N independent blocks, each one related to one single eigenvalue A; of L:

v, =J(x(¢))v;, —dAHv;, , i=12,....N
J(x) =0f / Ox is the Jacobian of f(x).
Fori=1 (A4 =0):
v; =J(X(¢))v; relates to the dynamics within the synchronization subspace X
Fori=23,....,N (4 >0):

v; =J(X(¢))v; —dA Hv; relates to the dynamics within the i-th direction transversal to X

The stability of X(¢) requires that, for each i =2,3,..., N, the maximal
Liapunov exponent of the latter equation be negative.

bf Carlo Piccardi - Politecnico di Milano - ver. 25/09/2024 11/19




Instead of the N —1 equations (n-dim) related to O<ZQ...S/1N, we discuss one single
parameterized equation (n-dim) (Master Stability Equation — MSE):

v=J(x(¢t))v—eHv, where e=dA1>0

If MSF is the maximal Liapunov exponent of the MSE for a given &, then the function
MSF = MSF(¢) is the Master Stability Function - MSF.

Synchronization requires MSF(g)<0 for all € =d/;.

MSF

P,

a3 23 >
Ol dXy dlg ~-- ddy E

"

Remark: MSF(0)>0 (=0) if the solution X(¢) of the isolated system X = f(x)
is chaotic (periodic).
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Remark: the MSF depends on the system ( /) and diffusion profile (H), but NOT on
the network topology (L).

MSF

/ MSF type I: MSF(g)>0 forall >0

0 €  synchronization is impossible on all networks

MSF MSF type II: MSF(g)<0 for all e>¢,>0

= e > : synchronization is possible on all networks,
? provided

£
d>-%

_j: Carlo Piccardi — Politecnico di Milano - ver. 25/09/2024 13/19



Given a MSF type II, synchronization is favoured in networks with large A,, because
&g/, is small (=less coupling strength d needed).

Complete network:

Jy=N

Synchronization is favoured as N grows.

N/ p

X< KA A&ﬂ
NN
S

Watts-Strogatz "loop":

A =0 per N -

Synchronization is more difficult as N grows.
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Figure 14. The second-largest eigenvalue %o, of the coupling matrix of the small-world
network (1) [41]. (@) A2s» as a function of the adding probability p with the network size
N = 500. (b) 224, as a function of the network size with adding probability p = 0.1.
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In a scale-free network A, is close to 1, similarly to a pure star network (4, =1).
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Figure 16. The second-largest eigenvalue of the coupling
matrix of the scale-free network (1), for my=m =3 (-);
mg=m=>5(— —);and my =m = 7(—-) [42].
B
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MSF type III:

MSF
synchronization is possible (with suitable d) if
O E{ EZ. E Z_N<g_2
b &
Remark: it is not true that any network can be
synchronized provided d is sufficiently large:
MSF
TK~._ . in some networks, when d grows we have first

* * — synchronization and then de-synchronization
ol dX\y  ddg --- dd F

. some networks cannot be synchronized by any d

o 049

FIG. 1. Four typical master stability functions for coupled
Rossler oscillators: chaotic (bold) and periodic (regular lines):
with v coupling (dashed) and x coupling (solid lines). (All scaled
for clearer visualization.) We concentrate on the x-coupled
chaotic case with a negative region (a, a,).

b , Carlo Piccardi - Politecnico di Milano - ver. 25/09/2024 17/19




Given a MSF type III, synchronization is favoured in networks with small Ay / 45.

In a Watts-Strogatz "loop", Ay / A, diverges with N (Ay /A, = aN? /(m(m+1))).

Again, synchronization can strongly be favoured (at constant N) by adding a few “long
distance” connections (small-world network).

3 : :. Random graph

FIG. 2 (color online). Decay of the eigenratio in a n = 100
S ] lattice as f(%) edges are added following purely deterministic,
Deterministic | semirandom (SW), and purely random schemes. Networks be-
come synchronizable below the dashed line (). The squares
(numerical) and the solid line [analytic Eq. (4)] show the
' NG eigenratio decay of pristine worlds through the deterministic
miiin St ottt ] addition of short-range connections. The dot-dashed line corre-
' sponds to purely random graphs [Eq. (5)], which become almost
surely disconnected and unsynchronizable at f =~ 0.0843. The
semirandom SW approach (dots, shown for ranges k =
1,2,4, 6,10, 14) is more efficient in producing synchronization
when & << Inn.
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Example: three-trophic food chain

0.02 -

0.01 -

0.00 -

-0.01 -

() H :H':diag[l 0 0]: synchronization is impossible for any network

(1) H:H":diag[O 1 O]: synchronization is possible for any network, provided d be
sufficiently large

(I11) H:H"':diag[O 0 1]: synchronization is possible (with suitable d) only for some
networks
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