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PHASE SYNCHRONIZATION: KURAMOTO MODEL (Kuramoto, 1984) 
 
𝑁𝑁 "planar rotors", with phase 𝜙𝜙𝑖𝑖 and natural frequency 𝜔𝜔𝑖𝑖: 

d𝜙𝜙𝑖𝑖
d𝑡𝑡

= 𝜔𝜔𝑖𝑖 
 
𝜔𝜔𝑖𝑖-s are random, extracted from a unimodal distribution with mean Ω 
 
Nonlinear coupling (𝑉𝑉(𝑖𝑖) = neighbours of 𝑖𝑖): 
 

d𝜙𝜙𝑖𝑖
d𝑡𝑡 = 𝜔𝜔𝑖𝑖 + 𝐾𝐾 � sin (𝜙𝜙𝑗𝑗 − 𝜙𝜙𝑖𝑖)

𝑗𝑗∈𝑉𝑉(𝑖𝑖)

 

 
Synchronization can be quantified by the "order 
parameter" 𝑟𝑟(𝑡𝑡) (centre of mass of the oscillators): 
 

𝑟𝑟(𝑡𝑡)ei𝜓𝜓(𝑡𝑡) =
1
𝑁𝑁� ei𝜙𝜙𝑗𝑗(𝑡𝑡)

𝑁𝑁

𝑗𝑗=1

 

 
• 𝑟𝑟(𝑡𝑡) → 0: no synchronization 
• 𝑟𝑟(𝑡𝑡) → 1: synchronization of all rotors (=identical d𝜙𝜙𝑖𝑖/d𝑡𝑡-s) 
• If 𝑟𝑟(𝑡𝑡) tends to a nonzero value, a fraction of oscillators is 

synchronized.  
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Mean-field Kuramoto model 
 
 
• 𝑁𝑁 oscillators on a complete network 

 
• coupling strength 𝐾𝐾 = 𝐾𝐾0/𝑁𝑁 

 
• combining d𝜙𝜙𝑖𝑖

d𝑡𝑡
= 𝜔𝜔𝑖𝑖 + 𝐾𝐾0

𝑁𝑁
∑ sin (𝜙𝜙𝑗𝑗 − 𝜙𝜙𝑖𝑖)𝑗𝑗  with 

𝑟𝑟(𝑡𝑡)ei𝜓𝜓(𝑡𝑡) = 1
𝑁𝑁
∑ ei𝜙𝜙𝑗𝑗(𝑡𝑡)𝑁𝑁
𝑗𝑗=1  we obtain: 

 
d𝜙𝜙𝑖𝑖
d𝑡𝑡 = 𝜔𝜔𝑖𝑖 + 𝐾𝐾0𝑟𝑟 sin (𝜓𝜓 − 𝜙𝜙𝑖𝑖) 

 
 
The coupling term depends on the "mean phase" 𝜓𝜓. 
 
The coupling strength 𝐾𝐾0𝑟𝑟 increases with 𝑟𝑟: positive feedback 
(the largest the number of synchronized oscillators, the largest the chance to capture the 
remaining ones) 
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Numerical + analytical results: existence of a threshold value 𝐾𝐾𝐶𝐶 
 
• 𝐾𝐾0 < 𝐾𝐾𝐶𝐶: no synchronization (𝑟𝑟(𝑡𝑡) → 0) 

 
• 𝐾𝐾0 > 𝐾𝐾𝐶𝐶: synchronization of larger and larger fractions of oscillators (𝑟𝑟(𝑡𝑡) → 1 as 
𝐾𝐾0 → ∞) 
 

• when 𝑟𝑟(𝑡𝑡) → 𝑟𝑟 < 1, the de-synchronized oscillators are those with largest 
detuning |𝜔𝜔𝑖𝑖 − Ω|. 
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Kuramoto model on complex networks 
 
 
Regular lattices: 𝐾𝐾𝐶𝐶 → ∞ as 𝑁𝑁 → ∞ (no 
synchronization) 
 
 
Small-world networks (𝑝𝑝 = prob. of rewiring): 𝐾𝐾𝐶𝐶 
decreases with 𝑝𝑝 
 
 
 

 
 
 
 
Heterogeneous networks (e.g., scale-free): 𝐾𝐾𝐶𝐶 ≈

<𝑘𝑘>
<𝑘𝑘2>

 
 
𝐾𝐾𝐶𝐶 → 0 in the limit 𝑁𝑁 → ∞: hubs drive the dynamics and impose 
synchronization 
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COMPLETE SYNCHRONIZATION IN NETWORKED OSCILLATORS 
 
Isolated nodes i  ( Ni ,,2,1 = ) represent identical, autonomous, n-dimensional 
dynamical systems 

)(xfx =   , nRx∈  
 
Their behaviour (when isolated) is oscillatory (periodic or chaotic). 
 
 
The coupling is linear (diffusive): 
 
 

( )∑
=

−+=
1:

)()()()( )()(
ijaj

ijii xxHdxfx  

 
• 𝑑𝑑 ≥ 0 is the coupling strength,  
• H  is a nn×  nonnegative matrix (diffusion 

profile) specifying which variables interact 
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Example: Each node represents a geographic location (island, patch) which is the habitat of a 
three-trophic food chain (resource R, consumer C, predator P). 
 
The isolated demographic dynamics are described by the classical Rosenzweig-MacArthur 
model: 

C
Rba

Ra
k
RrRR

11

1
1

1
+

−





 −=  

P
Cba

CaCdC
Rba

RaeC
22

2
1

11

1
1 11 +

−−
+

=  

PdP
Cba

CaeP 2
22

2
2 1

−
+

=  

 
 
In this case H  is diagonal: it specifies which are the species that disperse and sets the relative 
dispersal rates, e.g: 
 

• only 𝑅𝑅 disperses (e.g., seeds transported by the wind): [ ]001diagHH =′=  
• only 𝐶𝐶 disperses (e.g., herbivores): [ ]010diagHH =′′=  
• only 𝑃𝑃 disperses (e.g., carnivores): [ ]100diagHH =′′′=  
• all variables disperse, at different rates: [ ]01.01.01'''' diagHH ==  
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The overall dynamics are governed by the nN ×  equations: 
 

∑
=

−=
Nj

j
ij

ii Hxldxfx
,,2,1

)()()( )(


   ,  Ni ,,2,1 =  

where 
 

• if ji ≠ , jiijjiij aall −=−==  (=-1 if the link ji ↔  exists, 0 otherwise) 

• if ji = , ijijii ll ≠Σ−=  (= degree of i) 
 

][ ijlL =  is the Laplacian matrix of the undirected network: 
• real and symmetric (thus diagonalizable) 
• all the off-diagonal entries are non-positive 
• all rows have zero sum 
• irreducible if the network is connected  

 
It follows that the spectrum of L  has the 
form 
 

}0{)( 21 NL λλλσ ≤<==   
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Complete synchronization 
 
We have complete synchronization when 
 

)()()()( )()2()1( txtxtxtx N ====    t∀  
 
Since 

( )∑
=

−+=
1:

)()()()( )()(
ijaj

ijii xxHdxfx  , 

at synchronization all interaction terms )( )()( ij xxdH −  vanish: )(tx  must be a 
solution of the isolated system )(xfx = . 
 
 
 
The synchronized trajectory lies in n-dimensional subspace 
Σ defined by  
 

)()()( txtx i = , Ni ,,2,1 =  
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The synchronized solution )(tx  has nN ×  Liapunov exponents: 
 
• n  are the exponents of the (periodic or chaotic) attractor of )(xfx =  

(perturbations within Σ) 
 
• the remaining nN ×− )1(  are related to the perturbations transversal to Σ 

 
 
The stability of the synchronized solution )(tx  requires that all the 

nN ×− )1(  transversal Liapunov exponents be negative. 
 

 
 
 
 
Technically, the above condition guarantees that the synchronized 
solution has a basin of attraction with positive measure (volume). 
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Master stability equation - Master stability function 
 

Since L is diagonalizable, the variational equation (linearization) around )()()( txtx i =  can be 
decomposed in N  independent blocks, each one related to one single eigenvalue iλ  of L: 
 

iiii HvdvtxJv λ−= ))((   ,  Ni ,,2,1 =  
 

xfxJ ∂∂= /)(  is the Jacobian of )(xf . 
 

• For 1=i  ( 01 =λ ): 
 

ii vtxJv ))((=  relates to the dynamics within the synchronization subspace Σ 
 

• For Ni ,,3,2 =  ( 0>iλ ): 
 

iiii HvdvtxJv λ−= ))((  relates to the dynamics within the i -th direction transversal to Σ  
 

 
The stability of )(tx  requires that, for each Ni ,,3,2 = , the maximal 

Liapunov exponent of the latter equation be negative. 
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Instead of the 1−N  equations (n -dim) related to Nλλ ≤< 20 , we discuss one single 
parameterized equation (n -dim) (Master Stability Equation – MSE): 
 

HvvtxJv ε−= ))(( ,   where 0≥= λε d  
 
 
If MSF is the maximal Liapunov exponent of the MSE for a given ε , then the function 

)(εMSFMSF =  is the Master Stability Function – MSF. 
 

Synchronization requires 0)( <εMSF  for all idλε = . 
 

 
 

Remark: 0)0( >MSF  )0(=  if the solution )(tx  of the isolated system )(xfx =   
is chaotic (periodic). 
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Remark: the MSF depends on the system ( f ) and diffusion profile (H ), but NOT on 
the network topology (L). 
 

 
 
MSF type I: 0)( >εMSF  for all 0>ε  
 
synchronization is impossible on all networks 
 
 

 
 
 

 
MSF type II: 0)( <εMSF  for all 0>> sεε  
 
synchronization is possible on all networks, 
provided  

2λ
ε sd >  
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Given a MSF type II, synchronization is favoured in networks with large 2λ , because 

2/λε s  is small (=less coupling strength 𝑑𝑑 needed). 
 
 
Complete network: 
 

N=2λ  
 
Synchronization is favoured as N  grows. 
 
 

 
 
Watts-Strogatz "loop": 
 

02 →λ  per ∞→N  
 
Synchronization is more difficult as N  grows. 
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In a Watts-Strogatz loop, synchronization can 
be greatly favoured by adding a few “long 
distance” connections (small-world network). 
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In a scale-free network 2λ  is close to 1, similarly to a pure star network ( 12 =λ ). 
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MSF type III:  
 
synchronization is possible (with suitable d ) if 
  

1

2

2 ε
ε

λ
λ

<N  

 
Remark: it is not true that any network can be 
synchronized provided d  is sufficiently large:  
 

• in some networks, when d  grows we have first 
synchronization and then de-synchronization 
 

• some networks cannot be synchronized by any d  
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Given a MSF type III, synchronization is favoured in networks with small 2/ λλN . 
 

In a Watts-Strogatz "loop", 2/ λλN  diverges with N  ( ))1(/(/ 2
2 +≅ mmNN αλλ ). 

 
Again, synchronization can strongly be favoured (at constant N ) by adding a few “long 
distance” connections (small-world network). 
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Example: three-trophic food chain 
 

 
 

• (I) [ ]001diagHH =′= : synchronization is impossible for any network 
 
• (II) [ ]010diagHH =′′= : synchronization is possible for any network, provided d  be 

sufficiently large 
 

• (III) [ ]100diagHH =′′′= : synchronization is possible (with suitable d ) only for some 
networks 
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