SYNCHRONIZATION OF NETWORKED OSCILLATORS

Carlo PICCARDI

DEIB - Department of Electronics, Information and Bioengineering Politecnico di Milano, Italy

email carlo.piccardi@polimi.it https://piccardi.faculty.polimi.it

PHASE SYNCHRONIZATION: KURAMOTO MODEL (Kuramoto, 1984)

N "planar rotors", with phase ϕ_i and natural frequency ω_i : $\frac{\mathrm{d}\phi_i}{\mathrm{d}t} = \omega_i$

 ω_i -s are random, extracted from a unimodal distribution with mean Ω

Nonlinear coupling (V(i) = neighbours of i):

$$\frac{\mathrm{d}\phi_i}{\mathrm{d}t} = \omega_i + K \sum_{j \in V(i)} \sin(\phi_j - \phi_i)$$

Synchronization can be quantified by the "order parameter" r(t) (centre of mass of the oscillators):

$$r(t)e^{i\psi(t)} = \frac{1}{N} \sum_{j=1}^{N} e^{i\phi_j(t)}$$

- $r(t) \rightarrow 0$: no synchronization
- $r(t) \rightarrow 1$: synchronization of all rotors (=identical $d\phi_i/dt$ -s)
- If r(t) tends to a nonzero value, a fraction of oscillators is synchronized.

Mean-field Kuramoto model

- *N* oscillators on a complete network
- coupling strength $K = K^0/N$
- combining $\frac{\mathrm{d}\phi_i}{\mathrm{d}t} = \omega_i + \frac{K^0}{N} \sum_j \sin(\phi_j \phi_i)$ with $r(t) \mathrm{e}^{\mathrm{i}\psi(t)} = \frac{1}{N} \sum_{j=1}^N \mathrm{e}^{\mathrm{i}\phi_j(t)}$ we obtain:

$$\frac{\mathrm{d}\phi_i}{\mathrm{d}t} = \omega_i + K^0 r \sin\left(\psi - \phi_i\right)$$

The coupling term depends on the "mean phase" ψ .

The coupling strength K^0r increases with r: positive feedback (the largest the number of synchronized oscillators, the largest the chance to capture the remaining ones)

Numerical + analytical results: existence of a threshold value K_C

- $K^0 < K_C$: no synchronization $(r(t) \to 0)$
- $K^0 > K_C$: synchronization of larger and larger fractions of oscillators $(r(t) \to 1 \text{ as } K^0 \to \infty)$
- when $r(t) \rightarrow r < 1$, the de-synchronized oscillators are those with largest detuning $|\omega_i \Omega|$.

Kuramoto model on complex networks

Regular lattices: $K_C \to \infty$ as $N \to \infty$ (no synchronization)

Small-world networks (p = prob. of rewiring): K_C decreases with p

Heterogeneous networks (e.g., scale-free): $K_C \approx \frac{\langle k \rangle}{\langle k^2 \rangle}$

 $K_C \to 0$ in the limit $N \to \infty$: hubs drive the dynamics and impose synchronization

COMPLETE SYNCHRONIZATION IN NETWORKED OSCILLATORS

Isolated nodes i (i = 1,2,...,N) represent identical, autonomous, n-dimensional dynamical systems

$$\dot{x} = f(x)$$
 , $x \in \mathbb{R}^n$

Their behaviour (when isolated) is oscillatory (periodic or chaotic).

The coupling is linear (diffusive):

$$\dot{x}^{(i)} = f(x^{(i)}) + \sum_{j:a_{ij}=1} d(H(x^{(j)} - x^{(i)}))$$

- $d \ge 0$ is the coupling strength,
- H is a $n \times n$ nonnegative matrix (diffusion profile) specifying which variables interact

<u>Example:</u> Each node represents a geographic location (island, patch) which is the habitat of a three-trophic food chain (resource R, consumer C, predator P).

The isolated demographic dynamics are described by the classical Rosenzweig-MacArthur model:

$$\dot{R} = rR \left(1 - \frac{R}{k} \right) - \frac{a_1 R}{1 + a_1 b_1 R} C$$

$$\dot{C} = e_1 \frac{a_1 R}{1 + a_1 b_1 R} C - d_1 C - \frac{a_2 C}{1 + a_2 b_2 C} P$$

$$\dot{P} = e_2 \frac{a_2 C}{1 + a_2 b_2 C} P - d_2 P$$

In this case H is diagonal: it specifies which are the species that disperse and sets the relative dispersal rates, e.g.

- only *R* disperses (e.g., seeds transported by the wind): $H = H' = diag[1 \ 0 \ 0]$
- only $\mathcal C$ disperses (e.g., herbivores): $H=H''=diag[0\ 1\ 0]$
- only *P* disperses (e.g., carnivores): $H = H''' = diag[0 \ 0 \ 1]$
- all variables disperse, at different rates: $H = H'''' = diag[1 \ 0.1 \ 0.01]$

The overall dynamics are governed by the $N \times n$ equations:

$$\dot{x}^{(i)} = f(x^{(i)}) - d \sum_{j=1,2,...,N} l_{ij} Hx^{(j)}$$
, $i = 1,2,...,N$

where

- if $i \neq j$, $l_{ij} = l_{ji} = -a_{ij} = -a_{ji}$ (=-1 if the link $i \leftrightarrow j$ exists, 0 otherwise)
- if i = j, $l_{ii} = -\sum_{j \neq i} l_{ij}$ (= degree of i)

 $L = [l_{ij}]$ is the Laplacian matrix of the undirected network:

- real and symmetric (thus diagonalizable)
- all the off-diagonal entries are non-positive
- all rows have zero sum
- irreducible if the network is connected

It follows that the spectrum of \boldsymbol{L} has the form

$$\sigma(L) = \{0 = \lambda_1 < \lambda_2 \dots \le \lambda_N\}$$

Complete synchronization

We have complete synchronization when

$$x^{(1)}(t) = x^{(2)}(t) = \dots = x^{(N)}(t) = \overline{x}(t) \quad \forall t$$

Since

$$\dot{x}^{(i)} = f(x^{(i)}) + \sum_{j:a_{ij}=1} d(H(x^{(j)} - x^{(i)})),$$

at synchronization all interaction terms $dH(x^{(j)}-x^{(i)})$ vanish: $\bar{x}(t)$ must be a solution of the isolated system $\dot{x}=f(x)$.

The synchronized trajectory lies in n-dimensional subspace Σ defined by

$$x^{(i)}(t) = \overline{x}(t), i = 1, 2, ..., N$$

The synchronized solution $\bar{x}(t)$ has $N \times n$ Liapunov exponents:

- n are the exponents of the (periodic or chaotic) attractor of $\dot{x} = f(x)$ (perturbations within Σ)
- the remaining $(N-1)\times n$ are related to the perturbations transversal to Σ

The stability of the synchronized solution $\bar{x}(t)$ requires that all the $(N-1)\times n$ transversal Liapunov exponents be negative.

Technically, the above condition guarantees that the synchronized solution has a basin of attraction with positive measure (volume).

Master stability equation - Master stability function

Since L is diagonalizable, the variational equation (linearization) around $x^{(i)}(t) = \overline{x}(t)$ can be decomposed in N independent blocks, each one related to one single eigenvalue λ_i of L:

$$\dot{v}_i = J(\bar{x}(t))v_i - d\lambda_i H v_i$$
 , $i = 1, 2, ..., N$

 $J(x) = \partial f / \partial x$ is the Jacobian of f(x).

• For i = 1 ($\lambda_1 = 0$):

 $\dot{v}_i = J(\bar{x}(t))v_i$ relates to the dynamics within the synchronization subspace Σ

• For i = 2,3,...,N ($\lambda_i > 0$):

 $\dot{v}_i = J(\bar{x}(t))v_i - d\lambda_i H v_i$ relates to the dynamics within the i-th direction transversal to Σ

The stability of $\overline{x}(t)$ requires that, for each $i=2,3,\ldots,N$, the maximal Liapunov exponent of the latter equation be negative.

Instead of the N-1 equations (n-dim) related to $0 < \lambda_2 ... \le \lambda_N$, we discuss one single parameterized equation (n-dim) (Master Stability Equation – MSE):

$$\dot{v} = J(\bar{x}(t))v - \varepsilon Hv$$
, where $\varepsilon = d\lambda \ge 0$

If MSF is the maximal Liapunov exponent of the MSE for a given ε , then the function $MSF = MSF(\varepsilon)$ is the Master Stability Function – MSF.

Synchronization requires $MSF(\varepsilon) < 0$ for all $\varepsilon = d\lambda_i$.

Remark: $MSF(0) > 0 \ (= 0)$ if the solution $\overline{x}(t)$ of the isolated system $\dot{x} = f(x)$ is chaotic (periodic).

Remark: the MSF depends on the system (f) and diffusion profile (H), but NOT on the network topology (L).

MSF type I: $MSF(\varepsilon) > 0$ for all $\varepsilon > 0$

synchronization is impossible on all networks

MSF type II: $MSF(\varepsilon) < 0$ for all $\varepsilon > \varepsilon_s > 0$

synchronization is possible on all networks, provided

$$d > \frac{\mathcal{E}_S}{\lambda_2}$$

Given a MSF type II, synchronization is favoured in networks with large λ_2 , because ε_s/λ_2 is small (=less coupling strength d needed).

Complete network:

$$\lambda_2 = N$$

Synchronization is favoured as N grows.

Watts-Strogatz "loop":

$$\lambda_2 \to 0 \text{ per } N \to \infty$$

Synchronization is more difficult as N grows.

In a Watts-Strogatz loop, synchronization can be greatly favoured by adding a few "long distance" connections (small-world network).

Figure 14. The second-largest eigenvalue λ_{2sw} of the coupling matrix of the small-world network (1) [41]. (a) λ_{2sw} as a function of the adding probability p with the network size N=500. (b) λ_{2sw} as a function of the network size with adding probability p=0.1.

In a scale-free network λ_2 is close to 1, similarly to a pure star network ($\lambda_2 = 1$).

Figure 16. The second-largest eigenvalue of the coupling matrix of the scale-free network (1), for $m_0 = m = 3$ (-); $m_0 = m = 5(--)$; and $m_0 = m = 7(--)$ [42].

FIG. 1. Four typical master stability functions for coupled Rössler oscillators: chaotic (bold) and periodic (regular lines); with y coupling (dashed) and x coupling (solid lines). (All scaled for clearer visualization.) We concentrate on the x-coupled chaotic case with a negative region (α_1, α_2) .

MSF type III:

synchronization is possible (with suitable d) if

$$\frac{\lambda_N}{\lambda_2} < \frac{\varepsilon_2}{\varepsilon_1}$$

Remark: it is not true that any network can be synchronized provided d is sufficiently large:

- ullet in some networks, when d grows we have first synchronization and then de-synchronization
 - ullet some networks cannot be synchronized by any d

Given a MSF type III, synchronization is favoured in networks with small λ_N/λ_2 .

In a Watts-Strogatz "loop", λ_N/λ_2 diverges with N ($\lambda_N/\lambda_2 \cong \alpha N^2/(m(m+1))$).

Again, synchronization can strongly be favoured (at constant N) by adding a few "long distance" connections (small-world network).

FIG. 2 (color online). Decay of the eigenratio in a n = 100 lattice as $f(\frac{n}{2})$ edges are added following purely deterministic, semirandom (SW), and purely random schemes. Networks become synchronizable below the dashed line (β). The squares (numerical) and the solid line [analytic Eq. (4)] show the eigenratio decay of pristine worlds through the deterministic addition of short-range connections. The dot-dashed line corresponds to purely random graphs [Eq. (5)], which become *almost surely* disconnected and unsynchronizable at $f \approx 0.0843$. The semirandom SW approach (dots, shown for ranges k = 1, 2, 4, 6, 10, 14) is more efficient in producing synchronization when $k < \ln n$.

Example: three-trophic food chain

- (I) $H = H' = diag[1 \ 0 \ 0]$: synchronization is impossible for any network
- (II) $H = H'' = diag[0\ 1\ 0]$: synchronization is possible for any network, provided d be sufficiently large
- (III) $H = H''' = diag[0\ 0\ 1]$: synchronization is possible (with suitable d) only for some networks