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Abstract In addition to the modern web-based ‘‘social

networks’’, where contacts are only virtual, there is a more

traditional network of physical contacts among individuals,

which is ultimately responsible for the transmission of all

types of diseases. In this paper, we introduce the basic

models of networks used to describe the social contacts

within a population. Then we study how to transfer the

traditional epidemic models, based on the ‘‘homogeneous

mixing’’ assumption, to the new framework. We will see

that, moving from the classical to the network modelling

approach, results become more complex and somehow

unexpected, as the structure of the social network plays a

fundamental role.
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The phrase ‘‘social network’’ has been used in recent years to

denote the virtual communities of users of websites such as

Facebook, Twitter and the like. Thus, the connections between

individuals (‘‘friends’’ in Facebook or ‘‘followers’’ in Twitter)

is virtual, mediated by the World Wide Web and hence

transmitted by the technological structure of the Internet.

However, well before the advent of the Internet, quan-

titative sociology used this term to designate sets of

individuals connected by more traditional links, mostly

personal contacts, entailing physical proximity [16]. For

instance, an adult living and working in a city has social

contacts, though with different frequencies, with his rela-

tives, coworkers, friends, public transportation users, and

so on. Clearly, this is the kind of social network we are

interested in, to understand and model the processes

involved in epidemics, most of which spread by contact

between individuals: some by simple proximity (for

instance, sneezing or shaking hands can transmit flu or

measles), other ones by less casual contacts (as in sexually

transmitted diseases, or the spread of hepatitis or HIV

through infected material).

The connection between epidemiology and mathematics

goes back a long way. The first significant use of a

mathematical model dates back to 1927, when Kermack

and McKendrick suggested a system of differential equa-

tions in order to explain the evolution data of a plague

epidemic in India [7]. Their crucial assumption lay in

describing the population as a kind of perfectly mixed gas,

in which every individual is equivalent to every other and

has, in a fixed time interval, the same probability of

meeting any other individual. It is through the meeting of a

healthy and not immune individual (called susceptible, S)

and of an infected one (called infective, I) that the infec-

tion can be transmitted, with a probability depending on

the epidemic’s virulence: the susceptible person becomes

infected.

This modelling approach was the main one in mathe-

matical epidemiology for about 70 years, with countless

variations and extensions that made it possible, for instance,

to adapt the model to different pathogens or to refine it by

distinguishing individuals according to age or sex [1]. Let us

see an example, one of the simplest: in the SIS model it is

assumed that each individual may get infected and recover,
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passing through the transitions S ? I ? S��� an unlimited

number of times. If we denote by y(t) the proportion of in-

fectives in the population at time t, so that s(t) = 1 - y(t) is

the proportion of susceptibles, we have:

_yðtÞ ¼ �cyðtÞ þ byðtÞsðtÞ ¼ �cyðtÞ þ byðtÞð1� yðtÞÞ

The first summand on the right-hand side represents the

flow I ? S of recovered people (1/c is the average time

after which an individual recovers), while the second

summand is the crucial one to describe the S ? I process

of infection: the probability of each S meeting an I is

proportional to the density y(t) of the latter, so the number

of S ? I transitions is proportional to the product y(t)s(t).

The transmission coefficient b depends on both the social

structure, which dictates the frequency of meetings, and the

virulence of the pathogen.

What does the SIS model predict? It is easy to verify

that there exist two equilibrium solutions (Fig. 1): y = 0,

which corresponds trivially to the absence of infectives,

and y = 1 - c/b, which is positive and asymptotically sta-

ble if b[bcr = c, while for b\ bcr the solution y = 0 is

the asymptotically stable one. We may deduce that the

number of infected people grows with b, as we could have

guessed, but, more importantly, that there exists a threshold

value bcr under which the epidemic is bound to die out.

Indeed, if b is too small, the few infected people in the

population are not able to generate a sufficient number of

other infected individuals, due to the scarcity of contacts or

the low virulence of the pathogen. The existence of this

threshold has always been one of the cornerstones of epi-

demiological modelling [1].

1 From traditional models to network models

The complexity of present day societies, especially in the

most advanced countries, puts a strain on the kind of

modelling described above. While the hypothesis of a

‘‘perfect mixing’’ in the population has always been

debatable (since everybody has a different network of

social interactions), the assumption that all individuals are

about equivalent in terms of number of contacts is even less

solid: several studies have shown that people are highly

diverse, in the sense that a population typically include a

small set of individuals (the so-called ‘‘hubs’’) having a

high number of social contacts, within the whole of a

population having generally a middle-low connectivity (see

examples in Fig. 2). We might rightly guess that the hubs

play a crucial role in the spread of epidemics.

Another point of view involves the actual details of

spatial spread. The SIS model sketched above does not take

spatial factors into account, since it imagines the popula-

tion to be confined in a ‘‘container’’, where it is perfectly

mixed. If we want to describe the spread of the epidemic in

a region, we have to derive a partial differential equation

model in the variable y(t, x), where x is the spatial variable.

The simplest and most intuitive generalisations of the SIS

model assume a diffusive term, which means that an epi-

demic originating at a point expands with a wavefront

covering ever larger areas. This is a phenomenon that has

been observed very often in the past. Figure 3 shows as an

example the Black Death epidemic that had decimated

Europe by the middle of the fourteenth century: having

appeared in Sicily in 1347, the epidemic gradually spread

northwards, covering the whole of Europe within 3 years.

The spreading was conveyed by the slow and not so

numerous journeys by travellers and merchants between

adjacent villages and cities.

The present situation is far different, as is clear from the

second case shown in Fig. 3, that of the SARS epidemic in

summer 2003. The epidemic originated in the Far East

(Hong Kong), but within a few weeks important centres of

infections appeared in several cities around the world,

especially those harbouring significant Chinese communi-

ties. The process of spreading was twofold. On one hand,

just like the case discussed above, it was of a ‘‘local’’ kind:

the network of social relations mainly includes people who

are nearby (relatives, coworkers, friends and so on) with

whom contacts are frequent. This was the earlier mecha-

nism of spreading, and indeed, it caused a very high inci-

dence of the disease in crowded Hong Kong and its

environs. But this was followed by a long-range spreading

carried by air transport, in this case toward the main emi-

gration areas. In addition to local contacts, which are often

abundant and frequent, many individual also have ‘‘remote’’

contacts, typically few and uncommon, but on the whole

sufficient to spread the epidemic far away in a very short

time. This is a process which was clearly impossible not just

at the time of the Black Death, but even a few decades ago,

and which cannot be possibly described by the conventional

diffusive models, but requires network models instead.

Fig. 1 In the classical SIS model, the proportion of infectives at the

equilibrium grows with the transmission coefficient b, but the

epidemic dies out (that is, y ? 0) if b\bcr
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2 Elements of network theory

A network is defined by a graph consisting of N nodes and

L edges (or links) [2, 5, 11, 12]. In the case of social net-

works, the nodes represent individuals, while the links

describe the social relationship that exists between pairs of

individuals. As already mentioned, this may be a virtual

relationship, if we consider recent, web-based ‘‘social

networks’’, or an actual physical connection, if the network

describes associations between relatives, friends, col-

leagues, etc. Since we are dealing with the spread of epi-

demics, we may assume the network to be undirected, as

the pathogen can transmit both in the direction i ? j and in

the direction j ? i. Moreover, we shall confine ourselves

to the simplest case, and omit assigning a weight wij [ 0 to

each i $ j link, which might for instance give the fre-

quency of social contacts between different pairs of indi-

viduals. Under these hypotheses, the network is completely

described by its adjacency matrix A = [aij], an

N 9 N matrix in which aij = aji = 1 if the i $ j link

exists, while aij = aji = 0 otherwise: A is therefore a

symmetrical matrix (Fig. 4).

The network is said to be connected if for every pair

(i, j) of nodes there is a path joining i and j in the graph. The

distance dij is then defined as the length (measured by the

number of links) of the shortest path (i, j). Hence, we can

introduce the notions of diameter D of the network, that is,

the maximum of distances dij, and of average distance d,

that is, the average of all dij values of the N(N - 1)/2 dis-

tinct pairs of nodes. As we shall see later, a crucial feature of

real-life networks, and in particular of social ones, is a

surprisingly small average distance, even when their size

N is very large.

Fig. 2 The number of

proximity contacts in the

residents of a big city (left, [6])

or the number of sexual partners

in the previous 12 months

declared by the individuals of a

community (right, [8]) vary

greatly, suggesting a strong

heterogeneity in the

connectivity of the individuals

themselves

Fig. 3 Left the geographical spreading of the Black Death in the fourteenth century is described by a classical diffusive model [13, p. 105]; right

in the case of the 2003 SARS epidemic, the epidemic spreads over large distances rapidly, due to air transport [3]

Fig. 4 A network with N = 7 nodes and L = 14 links, and its

adjacency matrix A
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The degree ki is the number of contacts of the node i,

that is, the number of links incident to i: so we have

ki =
P

jaij. The single most important description of a

network is given by its degree distribution P(k) which, for

each k = 1, 2,…, gives the relative abundance of k-degree

nodes in the network:

PðkÞ ¼ number of nodes of degree k

N
:

Since
P

k P(k) = 1 and 0 B P(k) B 1 for each k, the

degree distribution is formally analogous to a discrete

probability distribution. In this sense, the value P(k) can be

taken to be the probability that a randomly chosen node has

degree k. The average degree m of the network is given by

m ¼ 1

N

XN

i¼1

ki ¼
X

k

kPðkÞ ¼ 2L

N

where the last expression is a consequence of the fact that

each of the L links contributes 1 to the degree of both the

nodes it connects.

A network is said to be (strictly) homogeneous when all

of its vertices have the same degree ki = m, hence

P(m) = 1 and P(k) = 0 for k = m. This is a situation that

never occurs in real-life networks, but it is however possible

to find examples of almost homogeneous networks, that is,

in which the node degrees never lie too far from the average

value m. An important example is given by the so-called

Erdös–Rényi networks: having fixed N and L (and hence the

average degree m = 2L/N), the network is constructed by

assigning links to L pairs of nodes selected randomly among

the N(N - 1)/2 possible ones. For sufficiently large N and

L (formally: for N ? ? with m fixed), we can prove that

P(k) converges to a Poisson distribution with mean m: what

this means is that most nodes have a degree not far from

m which can so be taken as a representative value (or

‘‘typical scale’’) of the degree of the nodes. So, in terms of

social networks, an Erdös–Rényi network represents a

community of individuals in which everybody has

approximately the same number of acquaintances (Fig. 5).

In the last 15 years, extensive analysis of representative

data for real-life networks has clearly shown that (almost)

homogeneous degree distributions are the exception rather

than the rule. Instead, most networks have strongly heter-

ogeneous degree distributions, where few nodes with a

very high degree (the so-called hubs) can be found together

with a majority of medium-low degree nodes. Such

examples have been found almost everywhere, from biol-

ogy to the WWW, from transport to trade networks, to

mention just a few instances. In a social network, this

means that in the population there are individuals who, due

to their kind of activities, are in touch with a very large

number of people. Alongside these individuals, there are

others who, at the opposite end of the distribution, have just

a few contacts. For such a network, the average degree m,

while mathematically well-defined, has no informative

value, since the deviation from it may be huge: the network

has no ‘‘characteristic scale’’ and is indeed called scale-

free.

In a celebrated paper, Barabási and Albert [4] proposed

a simple and elegant algorithm to create a scale-free

network artificially. Having fixed the average degree

m (integer and even, for the sake of simplicity), the net-

work is iteratively constructed by adding at each step a new

node with m/2 links, to be connected to m/2 existing nodes.

The crucial ingredient of the algorithm lies in selecting

these nodes, which are picked up randomly by assigning to

each node a probability of being selected proportional to its

current degree ki. In other words, the new node will tend to

connect to nodes that are already well connected, with an

effect of positive feedback that, in the end, is what is

actually responsible for the creation of hubs. Adding more

and more nodes (and hence for N ? ?), the degree dis-

tribution converges toward a power law of the form

P(k) * k-3. It is important to remark that such a distri-

bution has a divergent variance, that is, r2 =
P

k(k -

m)2P(k) ? ? when N ? ?. This property does not hold

for real-life networks with a finite N. However, for such

networks, if N is very large, r2 will tend to be very large

Fig. 5 Left an almost

homogeneous (Erdös-Rényi)

network with N = 100 and

L = 300. Right a Poisson

degree distribution with average

degree m [15]
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too, with interesting consequences on the mechanism of

spreading of epidemics, as we shall see (Fig. 6).

Another feature clearly emerging from the study of real-

life data involves the average distance d, which is often

surprisingly small with respect to the size N of the network.

In the context of social networks, this property was first

highlighted in the 1960s by the now famous experiment by

Milgram [9], which gave rise to the ‘‘theory’’ of the ‘‘six

degrees of separation’’, now fully a part of popular culture.

According to this theory, in the social network consisting

of all the inhabitants of the Earth (in which N equals some

billion), the distance between two arbitrary individuals is

on the average six. In other words, assuming two individ-

uals to be linked if they are related by kinship, friendship

etc., it would be possible to connect any two human beings

by a chain consisting on the average of six links. While this

belief is based on extrapolating from experiments per-

formed on a far smaller scale, there is reason to believe that

the actual average distance d is not much larger, and in any

case several orders of magnitude smaller than N. A network

with this property is called a small-world network. More

precisely, if we consider a set of networks parametrised by

N, we say that the set has the small-world property if

d grows as log N, and hence far slower than N.

In 1998, Watts and Strogatz [17] provided a simple

experimental explanation of the small-world property,

showing that d is small when there is even a slight pro-

portion of ‘‘long-distance’’ connections. The experiment

works as follows: we start with a network with a regular

geometry, that is, in which all connections are of ‘‘local’’

type; then we randomly select a (small) proportion

0 \ p \ 1 of the links, for each of these we disconnect one

randomly chosen endpoint, and reconnect it to a node again

chosen at random (‘‘rewiring’’). As the diagram in Fig. 7

shows, a value as small as p = 0.001 (that is, just one

thousandth of the links is rewired) is sufficient to halve the

average distance d, while p = 0.01 reduces it to 20 % of

the original value. It can be shown that, while d * N in the

regular network, we have d * log N in the rewired one.

So, long-distance connections turn a regular network into a

small-world one and, in the case of epidemic spreading,

they allow a rapid transmission of the contagion in all areas

of the network: this is what happened for the SARS epi-

demic mentioned earlier.

Fig. 6 Left a simplified

example of a non-homogeneous

network. Right a power law

degree distribution (truncated to

a finite k) in a logarithmic scale;

the node degrees vary from 1 to

100 (from [15])

Fig. 7 With just a small proportion p of ‘‘long-distance’’ links, a regular network (a left) acquires the small-world property (b right); the average

distance d(p) decreases rapidly with p (modified from [17])
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3 Epidemic spreading in a network

Having described a population with a network model, the

spreading of an epidemic can be seen as a dynamic process

that uses the network as its support. The most direct and

effective class of models exploitable to this end is that of

probabilistic cellular automata. In their simplest version,

these are discrete-time models, that is, models in which the

events happen at times t = 0, D, 2D, …, having chosen D
as our discretisation interval. At time t, each node i is in a

state xi
t belonging to a finite set

P
= {0, 1, …, q - 1},

typically of a small cardinality q. At time t ? D, the node

i will change to a state xi
tþD depending, according to prob-

abilistic rules to be specified, on xi
t but also on the state of

the nodes directly linked to i (the so-called ‘‘neighbours’’ of

i). The cellular automaton is completely defined when we

have specified the network, giving its adjacency matrix

A, and the interaction rules among adjacent nodes. Having

fixed the initial state xi
0 for all the nodes and allowing the

system to evolve, what we obtain is a realization of a sto-

chastic process, since the interaction rules are probabilistic.

The first question we might ask is rather obvious: what

properties are common to all possible instances? This

means we are asking whether the epidemic is able to spread

or not, and in the former case, which global value it may

reach, which nodes are most frequently hit, and so on. The

second question is subtler: does the answer to the first

question depend on the topological properties of the net-

work? We are asking, in other words, whether the structural

features of the network (the degree distribution, for

instance) play a role in the result of the spreading process.

As we have done above, for the sake of simplicity let us

fix our attention on the SIS process. There are two possible

states: susceptible and infected. So we take
P

= {0, 1},

defining xi = 0 if i is susceptible, while xi = 1 if i is

infected. For the recovery process I ? S, assume that if the

node i is infected at time t, then with probability cD it will

be healthy (so susceptible again) at time t ? D, while it

will stay infected with probability (1 - cD). As for the

infection process S ? I, assume that the probability for the

susceptible node i to become infected is qD
PN

j¼1 aijx
j
t , that

is, proportional to the number of infected neighbours

(recall that aij = 1 if j is a neighbour of i, otherwise

aij = 0).

This rule set can be easily transferred to instructions in a

programming environment (Matlab, for instance): having

defined the network by its adjacency matrix, it is possible

to run several simulations and to analyse the results in

several ways. However, we want to know if it is possible to

get an aggregate description, possibly up to some approx-

imation, of the results we might expect from those simu-

lations: this means to write a mean field model for a process

intrinsically distributed. Let us start by writing a balance of

the number of infected individuals Y [ [0, N] between two

consecutive (discrete) times:

Yðt þ DÞ ¼ YðtÞ � cDYðtÞ þ qDUðtÞðN � YðtÞÞ

where N - Y(t) is the number of susceptible individuals,

while U(t) is an estimate of the mean value of infected

neighbours for every susceptible individual. Notice that we

have gone from a microscopic description, typical of a cellular

automaton, where the number of infected neighbours may

well be different for each susceptible individual, to a

macroscopic one, where we have to use averaged values.

Now, if the degree distribution is (almost) homogeneous, we

can assume that every node has m neighbours (the average

degree); moreover, by ignoring possible spatial

inhomogeneities, we may assume that a proportion of these

neighbours equal to y(t) = Y(y)/N is infected, that is, a

proportion equal to that for the whole network. Incorporating

these hypotheses in the balance equation, dividing by N, and

taking the limit as D ? 0, we find

_yðtÞ ¼ �cyðtÞ þ qmyðtÞð1� yðtÞÞ

We immediately notice that this equation is the same as

for the ‘‘classical’’ SIS model discussed above; that model is

therefore valid not only under the hypothesis of a perfectly

mixed population, but also in a network where the contact

structure is fixed, on the condition that all individuals have

(approximately) the same number of contacts. By

comparing the two formulas, we notice that b = qm: the

derivation through the network model makes it clear that the

transmission coefficient b consists of two factors: the first

one (q) purely biological and representative of the

pathogen’s virulence, the second one (m) related to the

structure of the social network. Just as the ‘‘classical’’ SIS

model predicted, in a homogeneous network as well the

epidemic can spread and survive only if b[ bcr = c, hence

only if q[qcr = c/m, otherwise it will die out.

The situation is quite different if the social network has

a strongly heterogeneous degree distribution (scale-free

network), as shown by Pastor-Satorras and Vespignani in a

celebrated paper [14]. The hypothesis that the number of

neighbours can be described by U(t) = my(t) is not

acceptable anymore, since the number of neighbours can

stray far, node by node, from the average value m. Hence, it

is necessary to substitute for the single equation in y(t) a

system of differential equations in the variables yk(t),

k = 1, 2, …, one for each degree appearing in the network,

where yk describes the proportion of infected individuals

within the set of nodes of degree k:

_ykðtÞ ¼ �cykðtÞ þ qUkðtÞð1� ykðtÞÞ; k ¼ 1; 2; . . .

The term Uk(t) now represents the expected number of

infected neighbours for a degree k node; as it can be shown,
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it is proportional to k and is of the form Uk(t) =

kF(y1(t), y1(t), …). Finally, the global proportion of

infected can be written as y(t) =
P

kP(k) yk(t).

The properties of the model just described can be

studied partly in an analytic way and partly by means of

numerical analysis: the results parallel the simulations run

directly via probabilistic cellular automata. Whichever

approach we prefer, the results agree in pointing out the

disappearance of the threshold value qcr for networks of

arbitrarily large size N: the epidemic is able to survive and

spread in the network even for an arbitrarily low virulence.

More precisely, it can be shown (by stability analysis) that

the threshold lies, for any degree distribution, at the value

qcr ¼
cm

r2 þ m2

where m and r2 are, respectively, the mean and the vari-

ance of the degree distribution. In a strictly homogeneous

network, r2 = 0, so qcr = c/m, as we have already seen. In

a scale-free network as discussed above, on the other hand,

when N ? ? we have r2 ? ?, and so qcr ? 0. In

concrete terms, in large networks the threshold value qcr is

exceedingly small, even if not equal to zero.

As it is apparent from Fig. 8, for a very small q, the

value y where the epidemic reaches a steady state in a

strongly heterogeneous network is different from zero, but

very low. Moreover, with a few algebraic steps, it can be

shown that, again in a state of equilibrium, the proportion

yk of infected nodes of degree k is

yk ¼
1

1þ a=k
;

where a is a function of the problem data but does not

depend on k. So the proportion of infected nodes

increases monotonically with k, and yk ? 1 for an

arbitrarily large k. In other words, the higher the values

we take in account for the degree k, the fewer the nodes

we will find (P(k) ? 0), but the higher will be the

probability that they be infected (yk ? 1). This is the

process underlying a contagion within a heterogeneous

network: once the epidemic is in the network, the hubs,

due to their extremely high number of connections, have

a high probability of getting infected. In a way, they are

the ‘‘watchmen’’ of the epidemic, which is thus able to

avoid extinction and survive, even if at low levels.

Indeed, this is the scenario observed in some kinds of

disease [10] as well as, turning to technology, the typ-

ical pattern in the spreading and persistence of computer

viruses in the Internet [14].

The example we have studied here, while relatively

simple, is sufficient to stress how, in going from ‘‘classi-

cal’’ to ‘‘network’’ models, we can find unexpected and, in

any case, more complex and elaborate results. In the last

10 years, research has extended in countless directions, and

in the near future will continue to extend even farther. As

for epidemics, models more complex than a simple SIS

process have been used, as we might easily imagine, in

order to describe different features of the many kinds of

existing diseases. Regarding social networks, it is apparent

that a ‘‘static’’ description such as the one given here, that

is, one in which the individuals are fixed and each of them

maintains the same contacts forever, is overly simplified.

More realistic descriptions are bound to include the pro-

cesses of birth and death of individuals (with the associated

linking/unlinking of connections), their mobility (a net-

work variable in time) or, in the most complex case, the

reciprocal interaction between epidemics and topology:

links vary in time as a function of the epidemiological state

of the involved individuals (adaptive networks). All these

extensions, as it is easy to understand, make studying

networks more and more difficult and complex. However,

it is an effort well worth making: on the whole, infectious

diseases cause more than 15 million deaths worldwide

every year (25 % of all deaths [10]). Let us hope that the

joint study of epidemics and networks through mathemat-

ical models will help to lower this tragic toll.

Translated from the Italian by Daniele A. Gewurz

Appendix: Erdös number

An unusual social network is the one defined by collabo-

rations between mathematicians: each node represents a

scholar, while two nodes are linked if the two scholars have

written and published at least one joint paper. Although the

central connected core of the networks (that is, the main

component that leaves out isolated nodes and small com-

ponents unconnected with the rest) consists of no less than

268,000 nodes, the average distance between any two

scholars is definitely low: about 7. This is a clear evidence

Fig. 8 The threshold value qcr, under which the epidemic dies out,

decreases when the variance of the degree distribution P(k) increases.

So, in heterogeneous networks we may have qcr ? 0 when N ? ?:

the epidemic can survive and spread even with an arbitrarily low

virulence (modified from [14])
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of the small-world property. A particularly special node is

that corresponding to Paul Erdös (1913–1996), a very

prolific Hungarian mathematician (more than 1,400 pub-

lished papers), but chiefly a very collaborative one (509

different co-authors). In network jargon, this means that the

Erdös node has 509 neighbours or, equivalently, that it has

degree equal to 509. For any given mathematician, his or

her Erdös number E is the distance between the corre-

sponding node and the Erdös node. By the above, there are

509 scholars with E = 1. Due to the already mentioned

small-world property, E may turn out to be surprisingly

low: the present author, even though he does not frequently

contribute to mathematical journals, has E = 4, slightly

less than the average value, which is about 4.65. For further

details, as well as to compute one’s own Erdös number, see

the Erdös Number Project web page (http://www.oakland.

edu/enp/).
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