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Abstract

Synchronization of coupled oscillating systems means appearance of certain rela-
tions between their phases and frequencies. Here we use this concept in order to
address the inverse problem and to reveal interaction between systems from exper-
imental data. We discuss how the phases and frequencies can be estimated from
time series and present techniques for detection and quantification of synchroniza-
tion. We apply our approach to human posture control data of healthy subjects and
neurological patients, to multichannel magnetoencephalography data and records of
muscle activity of a Parkinsonian patient, and also use it to analyse the cardiores-
piratory interaction in humans. By means of these examples we demonstrate that
our method is effective for the analysis of systems interrelation from noisy nonsta-
tionary bivariate data and provides other information than traditional correlation
(spectral) techniques.
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1 Introduction

Synchronization is a basic phenomenon in science, discovered at the beginning
of the modern scientific age by Huygens [1]. In the classical sense, synchro-
nization means adjustment of frequencies of periodic self-sustained oscillators
due to weak interaction [2–5]. This effect (also referred to as phase locking or
frequency entrainment) is well studied and finds a lot of practical applications
[3,4].

During the last 15 years the notion of synchronization has been generalized to
the case of interacting chaotic oscillators. In this context, different phenomena
exist which are usually referred to as “synchronization”, so one needs a more
precise description. Due to a strong interaction of two (or a large number)
of identical chaotic systems, their states can coincide, while the dynamics in
time remains chaotic [6,7]. This effect can be denoted as “complete (identical)
synchronization” of chaotic oscillators. It can be easily generalized to the case
of slightly non-identical systems [7], or the interacting subsystems [8].

Recently, the effect of phase synchronization of chaotic systems has been de-
scribed [9]. It is mostly close to synchronization of periodic oscillations, where
only the phase locking is important, while no restriction on the amplitudes
is imposed. Correspondingly, the phase synchronization of chaotic system is
defined as the appearance of a certain relation between the phases of inter-
acting systems (or between the phase of a system and that of an external
force), while the amplitudes can remain chaotic and are, in general, non-
correlated. Of course, the very notion of phase and amplitude of chaotic
systems is rather non-trivial. Remarkably, the properties of phase synchro-
nization in chaotic systems are similar to those of synchronization in periodic
noisy oscillators [10]. This allows one to describe both effects within a com-
mon framework. Moreover, from the experimentalist’s point of view, one can
use the same methods in order to detect synchronization in both chaotic and
noisy systems; we will use this analogy below. Describing particular experi-
ments and searching for phase synchronization, we will not be interested in the
question, whether the observed oscillations are chaotic or noisy: the approach
we present below is equally applicable in both these cases.

1.1 Synchronization in biology

Synchronization phenomena are often encountered in living nature. Indeed,
the concept of synchronization is widely used in experimental studies and
in the modeling of interaction between different physiological (sub)systems
demonstrating oscillating behavior. The examples range from the modeling
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of the heart in the pioneering paper of van der Pol and van der Mark [11]
to investigation of the circadian rhythm [12,13], phase locking of respiration
with a mechanical ventilator [14] or with locomotory rhythms [15], coordinated
movement [13] and animal gaits [16], phase locking of chicken embrion heart
cells with external stimuli and interaction of sinus node with ectopic pace-
makers [13], synchronization of oscillations of human insulin secretion and
glucose infusion [17], locking of spiking from electroreceptors of a paddlefish
to weak external electromagnetic field [18], and synchronization of heart rate
by external audio or visual stimuli [19].

A very interesting and important example is interaction of human cardiovas-
cular and respiratory systems. Although it is well-known that these systems
do not act independently [20] and in spite of early communications in the med-
ical literature (that often used different terminology) [21–26], in the biological
physics community these two systems were often considered to be not synchro-
nized. So, an extensive review of previous studies of biological rhythms led to
the conclusion that “there is comparatively weak coupling between respiration
and the cardiac rhythm, and the resulting rhythms are generally not phase
locked” (see [13], page 136). Recently, the interaction of these vital systems at-
tracted attention of several physics groups, and synchronization during paced
respiration [27,28] was investigated. Here, as well as in Refs. [21,23,24,27,28]
only synchronous states of orders n : 1 (n heartbeats within 1 respiratory cy-
cle) were found due to limitation of the ad hoc methods used for the analysis
of data. In our recent work [29,30] we have reported on cardiorespiratory syn-
chronization under free-running conditions; the proposed analysis technique
allows to find out synchronous epochs of different orders n : m. This finding
gives some indication for the existence of an unknown form of cardiorespira-
tory interaction.

The notion of synchronization is also related to several central issues of neu-
roscience (see, e.g., [31]). For instance, synchronization seems to be a central
mechanism for neuronal information processing within a brain area as well
as for communication between different brain areas. Results of animal exper-
iments indicate that synchronization of neuronal activity in the visual cortex
appears to be responsible for the binding of different but related visual fea-
tures so that a visual pattern can be recognized as a whole [32–34,31]. Another
evidence is that synchronization of the oscillatory activity in the sensorimotor
cortex may serve for the integration and coordination of information underly-
ing motor control [35]. Moreover, synchronization between areas of the visual
and parietal cortex, and between areas of the parietal and motor cortex was
observed during a visuomotor integration task in an awake cat [36]. However,
as yet, little is known about synchronization between different brain areas and
its functional role and behavioral correlates in humans. On the other hand,
synchronization plays an important role in several neurological diseases like
epilepsies [37] and pathological tremors [38,39]. Correspondingly, it is impor-
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tant to analyze such synchronization processes to achieve a better understand-
ing of physiological brain functioning as well as disease mechanisms.

1.2 Synchronization and analysis of bivariate data

As we have argued above, synchronization phenomena are abundant in the
real world and biological systems, in particular. Thus, detection of synchro-
nization from experimental data appears to be an important problem, that
can be formulated as follows: Suppose we can obtain several signals coming
from different simultaneous measurements (e.g., an electrocardiogram and res-
piratory movements, multichannel electro- or magnetoencephalography data,
records of muscle activity, etc.). Usually it is known how to attribute these
signals to different oscillating objects. The question is whether there are states
(or epochs) where these objects oscillate in synchrony. Unfortunately, typically
observed oscillations are highly irregular, especially in live systems, and there-
fore possible synchronization phenomena are masked by strong noise and/or
chaos, as well as by nonstationarity.

This task is similar to a well-known problem in time series analysis: how to
reveal the presence of an interdependence between two (or more) signals. The
analysis of such bivariate data is traditionally done by means of linear cross-
correlation (cross-spectrum) techniques [40] or nonlinear statistical measures
like mutual information or maximal correlation [41–43].

Recently, different synchronization concepts of nonlinear dynamics have been
used in studies of bivariate data. Schiff et al. [44] used the notion of dynamical
interdependence [45] and applied the mutual prediction technique to verify the
assumption that measured bivariate data originate from two synchronized sys-
tems, where synchronization was understood as the existence of a functional
relationship between the states of two systems, called generalized synchroniza-
tion. In our previous works [46–49,29], we proposed an ansatz based on the
notion of phase synchronization; this implies existence of a relationship be-
tween phases of two weakly interacting systems, whereas the amplitudes may
remain uncorrelated [9,10]. In our approach we assume that the measured bi-
variate data originate from two interacting self-oscillatory systems which may
either be phase locked or oscillate independently.

Generally, we try to access the following problem: suppose we observe a sys-
tem with a complex structure that is not known exactly, and measure two
time series at its outputs (Fig. 1). Our goal is not only to find out whether
these signals are dependent or not - this can be done by means of traditional
statistical techniques - but to extract additional information on the interac-
tion of some subsystems within the systems. Obviously, we cannot consider
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the system under study as a “black box”, but need some additional knowledge
to support the assumption that the content of this “box” is complex, and we
indeed encounter several subsystems, that generate their own rhythms, but
are, probably, weakly coupled.

An advantage of our approach is that it allows to address rather weak inter-
action between the two oscillatory subsystems. Indeed, the notion of phase
synchronization implies only some interdependence between phases, whereas
the irregular amplitudes may remain uncorrelated. The irregularity of ampli-
tudes can mask the phase locking so that traditional techniques treating not
the phases but the signals themselves may be less sensitive in the detection of
the systems’ interrelation [46,48].

a) b)

?

Fig. 1. Illustration of the synchronization approach to analysis of bivariate data.
The goal of the analysis is to reveal the presence of a weak interaction between two
subsystems from the signals at their outputs only. The assumption made is that the
data are generated by two oscillators having their own rhythms (a). An alternative
hypothesis is a mixture of signals generated by two uncoupled systems (b).

In the following we briefly review the ideas and results of theoretical studies
of the synchronization phenomena that are used in our approach to time se-
ries analysis. Next, we present techniques of the bivariate data analysis and
illustrate them by examples of physiological data. These examples are given in
the ascending order of the signal analysis complexity, and in our presentation
we dwell on the analysis itself, but not on the physiological importance of the
results.

2 Phase and frequency locking: a brief review

We know that synchronization of weakly coupled oscillators appears as some
relation between their phases and frequencies. In the context of data analy-
sis we are going to exploit this fact to tackle the inverse problem: our goal
is to reveal the presence of synchronization from the data. To this end we
have to estimate from the signals the phases and frequencies and analyse the

6



relations between them. First, we summarize what we know about the interde-
pendence of phases and frequencies of synchronized systems. Definitely, as the
experimental data are inevitably noisy, we always have to take fluctuations
into account. Therefore, any relation between phases should be treated in a
statistical sense.

2.1 Periodic oscillators

Stable periodic self-sustained oscillations are represented by a stable limit
cycle in the phase space, and the dynamics of a phase point on this cycle can
be described as

dφ

dt
= ω0 , (1)

where ω0 = 2π/T0, and T0 is the period of the oscillation. It is important that
starting from any monotonically growing variable θ on the limit cycle, one can
introduce the phase satisfying Eq. (1). Indeed, an arbitrary θ obeys θ̇ = ν(θ)
with a periodic ν(θ + 2π) = ν(θ). A change of variables

φ = ω0

θ∫

0

[ν(θ)]−1dθ

gives the correct phase, where the frequency ω0 is defined from the condi-
tion 2π = ω0

∫ 2π
0 [ν(θ)]−1dθ. A similar approach leads to correct angle-action

variables in Hamiltonian mechanics. From (1) it is evident that the phase cor-
responds to the zero Lyapunov exponent, while negative exponents correspond
to the amplitude variables (not written in (1)).

If two oscillators are weakly coupled, then in the first approximation one can
neglect variations of the amplitudes to obtain equations describing the phase
dynamics. In general, these equations have the form

dφ1

dt
= ω1 + εg1(φ1, φ2) ,

dφ2

dt
= ω2 + εg2(φ2, φ1) , (2)

where the coupling terms g1,2 are 2π-periodic in both arguments, and ε is the
coupling coefficient.

The phase space of Eqs. (2) is a 2-torus, and with the usual construction of
the Poincaré map this system can be made equivalent to a circle map, with a
well-known structure of phase-locking intervals (Arnold’s tongues) [50]; each
of the intervals corresponds to a n : m synchronization region. This picture is
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universal and its qualitative features do not depend on the characteristics of
the oscillations and of the external force (e.g. nearly sinusoidal or relaxational),
and on the relation between amplitudes.

Analytically, one can proceed as follows. The interaction between the oscilla-
tors essentially effects the evolution of their phases if the frequencies ω1,2 are
in resonance, i.e. if for some integers n, m we have

nω1 ≈ mω2 .

Then, in the first approximation, the Fourier expansion of the functions g1,2

contains slowly varying terms ∼ nφ1 − mφ2. This suggests to introduce the
generalized phase difference,

ϕn,m(t) = nφ1(t)−mφ2(t) . (3)

Subtracting the equations (2) and keeping only the resonance terms, we get

dϕn,m

dt
= nω1 −mω2 + εG(ϕn,m) , (4)

where G(·) is 2π-periodic. This is a one-dimensional ODE that admits solu-
tions of two kinds: fixed points or periodic rotations of ϕn,m. The stable fixed
point corresponds to perfect phase locking ϕn,m = const; periodic rotations
describe quasiperiodic motion with two incommensurate frequencies in the
system (2).

In the analytical treatment of the Eqs. (2) we have neglected nonresonant
terms, what is justified for small coupling. With nonresonant terms, the con-
dition of synchronization for periodic oscillators should be generally written
as a phase locking condition

|nφ1(t)−mφ2(t)− δ| < const (5)

where δ is some (average) phase shift, or as a frequency entrainment condition

nΩ1 = mΩ2 , (6)

where

Ω1,2 = 〈dφ1,2

dt
〉 .

We emphasize, that in the synchronized state the phase difference is generally
not constant but oscillates around δ. These oscillations vanish in the limit
of very small coupling (correspondingly, the frequency mismatch nω1 −mω2
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must be also small), or if the coupling depends only on the relative phase:
g1,2 = g1,2(nφ1 −mφ2).

2.2 Noisy oscillators

In general, both properties of phase and frequency locking (Eqs. (5,6)) are
destroyed in the presence of noise ξ(t) when instead of (4) one has

dϕn,m

dt
= nω1 −mω2 + εG(ϕn,m) + ξ(t) . (7)

For small noise the stable phase dynamics is only slightly perturbed. Thus
the relative phase ϕn,m mainly fluctuates around some constant level (former
fixed point). These nearly stationary fluctuations may be interrupted by phase
slips, where the relative phase changes relatively rapidly by ±2π. Thus, strictly
speaking, the phase difference is unbounded and condition (5) is not valid
anymore. Nevertheless, the distribution of the cyclic relative phase

Ψn,m = ϕn,m mod 2π (8)

has a dominating peak around the value corresponding to the stable fixed
point [51]. Presence of this peak can be understood as the phase locking in a
statistical sense.

If the noise is weak and bounded, then the phase slips are impossible and there
exists a range of frequency mismatch nω1−mω2, where the averaged condition
of frequency locking (6) is fulfilled. Near the boundaries of the Arnold tongue
the noise causes phase slips and the transition out of the synchronous regime is
now smeared. If the noise is unbounded, e.g. Gaussian, the probability of a slip
to occur is nonzero even for nω1−mω2 = 0, so that strictly speaking the region
of frequency locking shrinks to a point. As this probability is (exponentially)
small for weak noise, practically the synchronization region appears as an
interval of nω1−mω2 where nΩ1 ≈ mΩ2. Within this region, the distribution
of the cyclic relative phase is not uniform, so that one can speak of phase
locking.

In the case of strong noise, the phase slips in both directions occur very fre-
quently, so that the segments of nearly constant relative phase are very short
and time course of ϕn,m(t) looks like a random walk, that is unbiased in the
very center of the synchronization region and biased otherwise. The synchro-
nization transition is now completely smeared and, hence, synchronization
appears only as a weakly seen tendency.
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2.3 Chaotic oscillators

For the periodic oscillator the phase was introduced in Eq. (1) as a variable
corresponding to the shift along the limit cycle, and, hence, to the zero Lya-
punov exponent. Any autonomous continuous-time dynamical system with
chaotic behaviour possesses one zero Lyapunov exponent that correspond to
shifts along the flow, therefore we expect that phase can be defined for this
case as well.

Suppose we can define a Poincaré secant surface for our autonomous continuous-
time system. Then, for each piece of a trajectory between two cross-sections
with this surface we define the phase as a piece-wise linear function of time,
so that the phase increment is 2π at each rotation:

φP (t) = 2π
t− tn

tn+1 − tn
+ 2πn, tn ≤ t < tn+1. (9)

Here tn is the time of the n-th crossing of the secant surface. Obviously, the
definition is ambiguous, because it crucially depends on the choice of the
Poincaré surface. Nevertheless, defined in this way, the phase has a physically
important property: its perturbations neither grow nor decay in time, so it
does correspond to the direction with the zero Lyapunov exponent in the
phase space. Note that for periodic oscillations corresponding to a fixed point
of the Poincaré map, this definition gives the correct phase satisfying Eq. (1).

In contrast to the case of periodic oscillations, the growth of the phase of a
chaotic system cannot generally be expected to be uniform. Instead, the in-
stantaneous frequency depends in general on the coordinate of the intersection
with the Poincaré surface, i.e. on the irregular amplitude. This dependence can
be considered as an influence of some effective “noise” (although this irreg-
ularity has of course purely deterministic origin). Thus, the synchronization
phenomena for chaotic system are similar to those in noisy periodic oscilla-
tions [9,10], therefore, from an experimentalist’s viewpoint, we can treat them
in the same way.

10



2.4 An example: two coupled noisy Rössler oscillators

For illustration we take two coupled chaotic Rössler oscillators subject to noisy
perturbations. Namely, we consider the model

ẋ1,2 = −ω1,2y1,2 − z1,2 + ξ1,2 + ε(x2,1 − x1,2)

ẏ1,2 = ω1,2x1,2 + 0.15y1,2

ż1,2 = 0.2 + z1,2(x1,2 − 10)

(10)

where the parameters ω1,2 = 1±∆ω and ε govern the frequency mismatch and
the strength of coupling, respectively; ξ1,2 are two Gaussian delta-correlated
noise terms fulfilling 〈ξi(t)ξj(t

′)〉 = 2Dδ(t− t′)δi,j. The system is simulated by
Euler’s technique with the time step ∆t = 2π/1000. In the following we fix
D = 1.

0 20000 40000 60000

time

−10

0

10

20

ϕ 1,
1/2

π

−10

0

10

20

ϕ 1,
1/2

π

−π 0 π
Ψ1,1

0.00

0.05

0.10

−π 0 π
0.00

0.05

0.10

(a) (b)

(c) (d)

Fig. 2. Relative phase ϕ1,1 = φ1 − φ2 and distribution of Ψ1,1 = ϕ1,1 mod 2π for
the case of uncoupled (a,b) and coupled (c,d) identical chaotic systems perturbed
by noise. Although the fluctuations of ϕ1,1 in both cases seem to be quite alike,
the distributions (b) and (d) clearly identify the difference between coupled and
uncoupled regimes.

First we consider the case of two identical oscillators, i.e. ∆ω = 0. It makes
no sense to speak of frequency locking here, as the averaged frequencies are
equal even if the oscillators are uncoupled. Nevertheless, we can distinguish the
uncoupled (ε = 0) and coupled cases (ε = 0.04) if we look at the distribution
of the relative phase (Fig. 2). In both cases the relative phase performs a
random-walk-like motion, but its distribution is uniform in the absence of
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coupling and has a well-expressed peak if two systems weakly interact. Thus,
in the latter case we encounter phase locking understood in a statistical sense.

Now we consider detuned oscillators, ∆ω = 0.015 (Fig. 3). In the absence of
noisy perturbations, the phase difference oscillates around some constant level,
and its distribution obviously has a sharp peak (not shown). Therefore we can
speak of frequency and phase locking here (Fig. 3c). In the presence of noise
the relative phase performs a biased random walk, so there is obviously no
frequency locking. Nevertheless, the distribution of the phase definitely shows
the presence of phase locking (Fig. 3).
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Fig. 3. Relative phase ϕ1,1 = φ1−φ2 and distribution of Ψ1,1 = ϕ1,1 mod 2π for the
case of uncoupled (a,b) and coupled (c,d) non-identical chaotic systems perturbed
by noise. The horizontal line in (c) corresponds to the absence of noise: in this
case the phase difference fluctuates around some constant value due to influence of
chaotic amplitudes. These fluctuations are rather small (barely seen in this scale),
and no phase slips are observed; this fact is explained by the high phase coherence
properties of the Rössler attractor. In contrast to the noisy case, here we observe
both frequency and phase locking.

To conclude this Section, we stress that the appearance of synchronization
entails some relations between phases and frequencies of oscillators, but the
inverse statement is strictly speaking not correct. Indeed, if a system is outside
the synchronization region, but close to its border, then the distribution of the
cyclic relative phase is also non-uniform, and the frequencies of oscillators are
closer than those for non-interacting systems. Thus, the presence of a peak in
the distribution of Ψn,m(t) generally indicates the presence of some interaction
only, but does not necessarily mean that the systems are synchronized. As we
are not interested in determination of the borders of a synchronization region,
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but are only searching for the presence of coupling, this fact does not influence
interpretation of our results.

3 Estimating phases from data

Before we can analyse the relations between the phases of two oscillators, we
have to estimate these phases from scalar signals. We have shown above how
to define the phase for a periodic self-sustained system and for chaotic oscilla-
tions. Quite often, the phase of an oscillator can be determined if one can find
a suitable projection of the phase space ensuring that all the trajectories rotate
around some point that is taken as the origin. From this projection, the phase
can be identified with the angle (with respect to an arbitrary direction) of the
vector drawn from the origin to the corresponding point on the trajectory.
Note that in this way we obtain a some non-uniformly rotating phase, what
can essentially complicate the analysis. Another possibility is to construct a
Poincaré map (stroboscopic map) and to define the phase according to (9).

0 1 2 3 4
time [sec]

0 20 40 60 80 100
time [sec]

(a) (b)
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Fig. 4. Short segments of an electrocardiogram with the R-peaks marked (a) and of
a respiratory signal (b); both signals are in arbitrary units.

These two methods can be adapted for estimation of phases from experimental
data. To explain the details, we consider a human electrocardiogram (ECG)
and a respiratory signal (air flow measured at the nose of the subject) as ex-
amples. An essential feature of the ECG is that every (normal) cardiocycle
contains a well-pronounced sharp peak that can be with high precision lo-
calized in time; traditionally it is denoted as R-peak (Fig. 4a). The series of
R-peaks can be considered as a sequence of point events taking place at times
tk, k = 1, 2, . . .. Phase of such a process can be easily obtained. Indeed, the
time interval between two R-peaks corresponds to one complete cardiocycle 1 ;

1 From the physiologist’s viewpoint the cardiocycle starts with the P-wave that
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therefore the phase increase during this time interval is exactly 2π. Hence, we
can assign to the times tk the values of phase φ(tk) = 2πk, and for arbitrary
instant of time tk < t < tk+1

φ(t) = 2πk + 2π
t− tk

tk+1 − tk
. (11)

This method can be applied to any process that contains distinct marker
events and can therefore be reduced to the spike train. Determination of the
phase via marker events in time series can be considered as the analogy to the
technique of Poincaré section, although we do not need to assume that the
system under study is a dynamical one.

Now we consider the respiratory signal (Fig. 4b); it reminds a sine-wave with
slowly varying frequency and amplitude. Phase of such a signal can be obtained
by means of the analytic signal concept originally introduced by Gabor in 1946
[52]. To implement it, one has to construct from the scalar signal s(t) a complex
process

ζ(t) = s(t) + ısH(t) = A(t)eıφ(t) , (12)

where sH(t) is the Hilbert transform (HT) of s(t); the instantaneous phase
φ(t) and amplitude A(t) of the signal are then uniquely determined from (12).
Note, that although formally this can be done for an arbitrary s(t), A(t) and
φ(t) have clear physical meaning only if s(t) is a narrow-band signal (see the
discussion of properties and practical implementation of the HT and analytic
signal in the Appendix).

We can look at this technique from the other viewpoint: it can be consid-
ered as a two-dimensional embedding in coordinates (s(t), sH(t)). Note, that
in these coordinates a harmonic oscillation is represented by a circle for any
ω. This circle can be considered as the analogy to the phase portrait of the
harmonic oscillator. The phase obtained from this portrait increase linearly
in time φ(t) = ωt + φ0, as we expect it for this system. Note, however, that
the often used coordinates (s(t), ṡ(t)) and delay coordinates (s(t), s(t − τ))
generally produce an ellipse; the phase obtained as an angle from such plots
demonstrates periodic deviation from the linear growth (i.e., [φ(t)− ωt] oscil-
lates periodically) that is in this case the artifact of calculation 2 .

reflects the beginning of the excitation in the atria. This does not contradict to
our procedure: we understand the cycle as the interval between two nearly identical
states of the system.
2 Obviously, to obtain for a harmonic signal a circle in the embedding one can
use the coordinates (s(t), ṡ(t)/ω) or delay coordinates with τ = π/(2ω), but this
requires a priory knowledge of ω and cannot be implemented for a signal with slowly
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An important practical question is: Which method should be chosen for anal-
ysis of particular experimental data? To address this problem we make the
following remarks:

• If we define the phase of a system in order to characterize its frequency
locking properties, then different methods (via the Poincaré section, from
the two-dimensional projection of the phase space or from an oscillatory
observable by means of the Hilbert transform) give similar results, at least if
the system is a “good” one [10]. Although these phases vary microscopically,
i.e. on the time scale less than one (quasi)period, the average frequencies
obtained from these phases coincide, and it is exactly the frequencies what
is primarily important for the description of synchronization. Therefore,
theoretically all the definitions of the phase are equivalent. That is rarely
the case in an experimental situation, where we have to estimate the phases
from short, noisy and nonstationary records, so that numerical problems
become a decisive factor.

• If the signal has very well-defined marker events, like the ECG, the Poincaré-
map-technique is the best choice. It could be also applied to an “oscillatory”
signal, like the respiratory one: here it is also possible to define the “events”
(e.g. as the times of zero crossing) and to compute the phase according to
Eq. (11). However, we do not recommend to do this: the drawback is that
the determination of an event from the slowly varying signal is strongly
influenced by noise and trends in the signal. Besides, we get only one event
per quasiperiod, and if the record is short, then the statistics is poor. In such
case the technique based on the Hilbert transform is much more effective
because it provides the phase for every point of the time series, so that
we have a lot of points per quasiperiod and can therefore smooth out the
influence of noise and obtain sufficient statistics for the determination of
phase relationships.

Another important point is that even if we can unambiguously compute the
phase of a signal, we cannot avoid the uncertainty in the determination of the
phase of an oscillator 3 . The latter depends on the observable used; “good” ob-
servables provide equivalent phases (i.e. the average frequencies defined from
these observables coincide). In an experiment we are rarely free in the choice
of an observable. Therefore, one should always be very careful in formal ap-
plication of the presented methods and in the interpretation of the results.

We emphasize, that even if the observable is good enough, the distribution of
the estimated cyclic relative phase can essentially differ from that obtained
from the correct phase satisfying Eq. (1). Indeed, let us consider a strongly

varying frequency.
3 We remind that although one can compute several phases from different observ-
ables of the same oscillator, there exist only one phase of that system corresponding
to its zero Lyapunov exponent.
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nonlinear limit cycle oscillator and estimate the phase by means of the Hilbert
transform, or take as the phase the angle in the phase plane. If the angle ve-
locity of the phase point is essentially non-uniform in time, then the estimated
relative phase strongly oscillates on the time scale less than the period of os-
cillations. In this case the distribution of the cyclic relative phase becomes not
unimodal; the presence of noise makes this distribution even more smeared.
From the other hand, if the oscillations are nearly harmonic (in this case we
call the oscillators quasilinear), then the estimated phase is close to the true
one, and the distribution of the cyclic relative phase has a sharp peak. Devia-
tion of the distribution from a unimodal one can also occur if the interaction
between oscillators is not weak. We illustrate this with the following example.

An example: Synchronization via parametric action (modulation)

We consider a noisy van der Pol oscillator with modulated natural frequency

ẍ− µ(1− x2)ẋ + (ω + ∆ sin νt)2x = ξ , (13)

where µ = 1, the natural frequency is ω = 1, and ξ is the Gaussian delta-
correlated noise term. We vary the modulating frequency ν around 1/3, and
look for the 1 : 3 locking.

0.29 0.30 0.31 0.32
ν

−0.06

0.00

0.06

Ω
−3

ν

Fig. 5. Frequency — detuning plot for the van der Pol oscillator with the modulated
natural frequency; ∆ = 0.6. Bold line corresponds to the noise-free case; rather small
noise (D = 0.05) smears the plateau in the (Ω− 3ν) vs. ν plot (solid line).

First we compute the averaged frequency of the van der Pol oscillator Ω =
〈φ̇vdP 〉 for different values of the modulating frequency ν and plot Ω − 3ν vs
ν; these dependencies for the noise-free and noisy cases are demonstrated in
Fig. 5. We note, that in contrast to the case of synchronization by additive
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forcing, the locking here occurs only if the amplitude of the modulation ∆
exceeds some threshold value (or at least the width of the synchronization
region below this threshold is vanishingly small).

Next, we compute the distribution of the relative phase at the center of fre-
quency locking region ν = 0.307. These distributions shown in Fig. 6 are not
unimodal. Hence, synchronization via parametric modulation cannot be easily
described in terms of phase locking understood as the existence of a statis-
tically preferred value of the relative phase. In this case, in order to reveal
synchronization from phases, one has to use the stroboscopic approach, i.e. to
observe the phase of the oscillator at the instants of time when the phase of
the drive attains a certain fixed value; we explain this technique below.

π 0 π
Ψ1,3

0.00

0.05

0.10

π 0 π
Ψ1,3

0.00

0.05

0.10

(a) (b)

Fig. 6. Distribution of the cyclic relative phase for the noise-free (a) and noisy (b)
van der Pol oscillator with the modulated natural frequency.

4 Straightforward analysis of phase difference: Application to pos-
ture control

Sometimes synchronization can be detected in a straightforward way: by plot-
ting the generalized phase difference ϕn,m (see Eq. (3)) versus time and looking
for horizontal plateaus in this presentation. This simple method proved to be
efficient in investigation of model systems as well as for some experimental
data [48,18,19].

To illustrate this, we present the results of experiments on posture control in
humans [48]. During these tests a subject is asked to stay quietly on a special
rigid force plate equiped with four tensoelectric transducers. The output of
the setup provides current coordinates (x, y) of the center of pressure under
the feet of the standing subject. These bivariate data are called stabilograms;
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they are known to contain rich information on the state of the central nervous
system [53–56]. Every subject was asked to perform three tests of quiet upright
standing (3 minutes) with
(a) eyes opened and stationary visual surrounding (EO);
(b) eyes closed (EC);
(c) eyes opened and additional video–feedback (AF).
132 bivariate records obtained from 3 groups of subjects (17 healthy persons,
11 subjects with an organic pathology and 17 subjects with a phsychogenic
pathology) were analysed by means of cross-spectra and generalized mutual
information. It is important that interrelation between body sway in anterior–
posterior and lateral directions was found in pathological cases only. Another
observation is that stabilograms can be qualitatively rated into two groups:
noisy and oscillatory patterns. The latter appear considerably less frequently
– only some few per cent of the records can be identified as oscillatory – and
only in the case of pathology.

The appearance of oscillatory regimes in stabilograms suggests excitation of
self-sustained oscillations in the control system responsible for the mainte-
nance of the constant upright posture; this system is known to contain several
nonlinear feedback loops with time delay. From the other hand, the indepen-
dence of body sway in two perpendicular directions for all healthy subjects and
many cases of pathology suggests that two separate subsystems are involved in
the regulation of the upright stance. A plausible hypothesis is that when self-
sustained oscillations are excited in both these subsystems, synchronization
may take place. To test whether the interdependence of two components of a
stabilogram may be due to synchronization, we have performed the analysis
of the relative phase.

Here we present the results for one trial (female subject, 39 years old, func-
tional ataxia). We can see that in the EO and EC tests the stabilograms are
clearly oscillatory (Fig. 7) 4 . The difference between these two records is that
with eyes opened the oscillations in two directions are not synchronous during
approximately the first 110s, but are phase locked during the last 50s. In the
EC test, the phases of oscillations are perfectly entrained during all the time.
The behavior is essentially different in the AF test; here no phase locking is
observed.

An important advantage of the phase analysis is that by means of ϕn,m(t)
plots one can trace transitions between synchronous and non-synchronous
states that are due to nonstationarities in interacting systems and/or coupling

4 In order to eliminate low–frequency trends, a moving average computed over the
n–point window was subtracted from the original data. The window length n has
been chosen by trial to be equal or slightly larger than the characteristic oscillation
period. Its variation up to factor 2 does not effect the results.
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Fig. 7. Stabilograms of a neurological patient for EO (a), EC (b), and AF (c)
tests. The upper panels show the relative phase between two signals x and y that
are deviation of the center of pressure in anterior–posterior and lateral direction,
respectively. During the last 50s of the first test and the whole second test the phases
are perfectly locked. No phase entrainment is observed in the AF test.

(Fig. 7a). Noteworthy, this is possible even for very short records. Indeed, two
different regimes that can be distinguished in (Fig. 7a) contain only about
ten quasiperiods, i.e. these epochs are too short for reliable application of
conventional methods of time series analysis.

A disadvantage of the method is that synchronous regimes which correspond
to neighboring Arnold tongues, e.g. synchronization of order n : (m + 1),
appear in this presentation as nonsynchronous epochs. Besides, there exist no
regular methods to pick up the integers n and m, so that they are usually
found by trial and error. Respectively, in order to reveal all the regimes, one
has to analyse a number of plots. In practice, the possible values of n and m
can be estimated from the power spectra of the signals and are often restricted
due to some additional knowledge on the system under study.

Another drawback of this technique is that if noise is relatively strong, this
method becomes ineffective and may be even misleading. Indeed, frequent
phase slips mask the presence of plateaus (cf. Fig. 3) and synchronization can
be revealed only by a statistical approach, i.e. by analysis of the distribution
of the cyclic relative phase Ψn,m.
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5 Statistical analysis of phase difference: Application to brain ac-
tivity

If the interacting oscillators are quasilinear then we can estimate the strength
of the n : m phase locking by comparing the distribution of the cyclic relative
phase Ψn,m(t) with the uniform distribution. For a single record this can be
done by visual inspection (cf. the example of coupled noisy Rössler oscillators,
Figs. 2,3). In order to perform automatized analysis for large data sets or
in order to trace the variation of the strength of interaction with variation of
some parameter, we need quantitative criteria of synchronization. Quantitative
characterization is also required for significance tests. To this end we introduce
three n : m synchronization indices:

(1) The synchronization index based on the Shannon entropy S of the phase
difference distribution [49]. Having an estimate pk of the distribution of
Ψn,m, we define the index ρ as

ρn,m =
Smax − S

Smax

, (14)

where S = −∑N
k=1 pk ln pk, and the maximal entropy is given by Smax =

ln N ; N is the number of bins and pk is the relative frequency of finding
Ψn,m within the k-th bin 5 . Due to the normalization used,

0 ≤ ρn,m ≤ 1 , (15)

whereas ρn,m = 0 corresponds to a uniform distribution (no synchroniza-
tion) and ρn,m = 1 corresponds to a distribution localized in one point
(δ-function). Such distribution can be observed only in the ideal case of
phase locking of noise-free quasilinear oscillators.

(2) Intensity of the first Fourier mode of the distribution

γ2
n,m = 〈cos Ψn,m(t)〉2 + 〈sin Ψn,m(t)〉2 , (16)

where the brackets denote the average over time, can serve as the other
measure of the synchronization strength; it also varies from 0 to 1. The
advantage of this index is that its computation involves no parameters:
we do not need to choose the number of bins as we do not calculate the
distribution itself.

(3) If the oscillators are strongly nonlinear then the distribution of Ψn,m(t) is
non-uniform even in the absence of noise; this is essential if synchroniza-
tion occurs via parametric action. In this case we need some other mea-
sure to characterize the strength of synchronization. For this purpose we

5 The optimal number of bins can be estimated as N = exp[0.626 + 0.4 ln(M − 1)],
where M is the number of samples [57].
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recall the stroboscopic approach: we know that in the synchronous state
the distribution of the stroboscopically observed phase is the δ-function;
it is smeared in the presence of noise. Thus, for n : m synchronization we
have to characterize the distribution of

η = φ2 mod 2πn |φ1 mod 2πm=θ . (17)

This means that we observe the phase of the second oscillator at the
instants of time when the phase of the first one attains a fixed value
θ (phase stroboscope). To account for the n : m locking, the phases
are wrapped into intervals [0, 2πm] and [0, 2πn], respectively. Repeating
this procedure for all 0 ≤ θ < 2π and averaging, we get a statistically
significant synchronization index [49].

n:m synchronization

no n:m synchronization

θl
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Fig. 8. Synchronization index based on the conditional probability. Phase of the
second oscillator φ2 wrapped in the interval [0, 2πn] is observed stroboscopically,
i.e. when phase of the first oscillator φ1 is found in the certain bin θl of the interval
[0, 2πm]. If there is no synchronization then the stroboscopically observed φ2 is
scattered over the circle, otherwise it groups around some value. The sum of the
vectors pointing to the position of the phase on the circle provides a quantitative
measure of synchronization.

Practically, if we deal with the time series, we can introduce binning
for the phase of the first oscillator, i.e. divide the interval [0, 2πm] into
N bins. Next, we denote the values of φ1 mod 2πm falling into the l-th
bin as θl and the number of points within this bin as Ml. Then, with
the help of Eq. (17) we compute Ml corresponding values ηi,l, where
i = 1, . . . , Ml. If the oscillators are not synchronized, then we expect
ηi,l to be uniformly distributed on the interval [0, 2πn], otherwise these
quantities group around some value and their distribution is unimodal
(Fig. 8). To quantify it, we compute

Λl = M−1
l

Ml∑

i=1

exp [ı(ηi,l/n)] . (18)

The case of complete dependence between both phases corresponds to
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Fig. 9. Comparison of quantitative measures of synchronization using the simulated
data from two coupled Rössler oscillators (Eq. (10)). Transition to synchronous
state takes place when the difference of frequencies of two oscillators vanishes with
increase of coupling coefficient ε (a). Three 1 : 1 synchronization indices are shown
as the functions of ε (b).

|Λl| = 1, whereas |Λl| vanishes if there is no dependence at all. To improve
the statistics, we average over all N bins and get the synchronization
index

λn,m = N−1
N∑

l=1

|Λl| . (19)

According to the definition above λn,m measures the conditional proba-
bility for φ2 to have a certain value provided φ1 is in a certain bin.

We compare now these three indices using the simulated data. As a first model
example we take two coupled nonidentical Rössler oscillators (Eq. (10)); now
we consider a noise free case. Increasing the coupling strength ε, we observe a
transition to the synchronous state. This can be seen from Fig. 9a, where the
difference of frequencies of two oscillators is plotted as a function of coupling
strength. At ε ≈ 0.03 this difference vanishes, i.e. synchronization occurs. The
lower panel (Fig. 9b) shows the indices as functions of ε.

We see, that the indices are nonzero outside the synchronization region. It
is not surprising: we have noted already that the distribution of the cyclic
phase outside the region also has a peak. Thus, we can reveal the presence of
interaction even if it is too weak to induce synchronization. Comparing the
indices we can see that λ1,1 and γ1,1 are almost 1 inside the Arnold tongue,
while the index ρ1,1 attains essentially lower value; it has another drawback to
be mentioned: the estimate of this index strongly depends on the number of
bins used for computation of the histogram. The transition to the synchronous
state appears to be more sharp if described by the indices γ1,1 and ρ1,1. We
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Fig. 10. Comparison of quantitative measures of synchronization using the simu-
lated data from van der Pol oscillator with modulated natural frequency (Eq. (13)).
Transition to synchronous state takes place when the difference of frequencies of two
oscillators Ω−3ν vanishes with decrease of detuning (a). Three 1 : 3 synchronization
indices are shown as the functions of the frequency ν of the modulating force (b).

conclude, that if the goal of the analysis is to reveal very weak interaction
then the conditional probability index λn,m seems to be more appropriate.
Alternatively, if we have a number of time series and try to sort them into
groups - synchronized and not synchronized with respect to some reference
signal - then the indices γn,m and ρn,m are more suitable.

As the second example we consider van der Pol oscillator with modulated
natural frequency (Eq. 13). The distribution of the cyclic relative phase Ψ1,3

is broad (cf. Fig. 6), and, thus, synchronization cannot be understood in terms
of statistical phase locking. Therefore, the indices ρ1,3 and γ1,3 cannot reveal
synchronization, while the conditional probability index λ1,3 do indicates it
(Fig. 10).

5.1 Human brain activity during pathological tremor

Motivation and experimental data

Here we briefly present the results of the investigation of phase synchroniza-
tion between different brain areas, as well as between brain and muscle activ-
ity in Parkinsonian patients by means of noninvasive measurements [49,58].
These patients may exhibit involuntary shaking that is called tremor and pre-
dominantly affects the distal portion of the upper limb. Resting tremor in
Parkinsonian patients has a principal frequency in the band 3 – 6 Hz. The
goal of the study was to find out whether synchronization between different
cortical areas is involved in the generation of pathological tremor.
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As is known, the neuronal activity of the human brain can be noninvasively
assessed by registering the electric field with electroencephalography (EEG)
[59], and the magnetic field with magnetoencephalography (MEG) [60–62].
The measurement of the magnetic field is realized by means of superconduct-
ing quantum interference devices (SQUIDs). An important advantage of MEG
is that the scull and scalp are transparent to magnetic field. Therefore, in con-
trast to electric field, the externally measured magnetic field is not distorted.
As a result of this, MEG allows to achieve a high spatial resolution and to dis-
tinguish between the cortical activity originating from distinct areas provided
the latter are sufficiently remote.

The data were obtained by means of Neuromag-122 — a whole-head MEG
systems consisting of 122 SQUIDs arranged in a helmet-shaped array [61]. In
addition to the MEG, the electromyogram (EMG) from two antagonistic mus-
cles exhibiting tremor activity, namely the right flexor digitorum superficialis
muscle (RFM) and the right extensor indicis muscle (REM), was registered
by standard techniques. The data are introduced in Fig. 11; from the power
spectra one can see that they are not narrow-band signals. Therefore, filtration
is required in order to separate the frequency band of interest from the back-
ground brain activity. The visual inspection of the data after preprocessing 6

shows that they are nonstationary.

Data analysis and results

The phase analysis was performed in the following way. First, the instan-
taneous phases of signals were obtained by means of the Hilbert transform.
Next, one signal was taken as the reference one, and phase locking between
this channel and all others was studied in pairs. To cope with nonstationarity,
a sliding window analysis was done and the distribution of Ψn,m was computed
for every time point t within the window [t− T/2, t + T/2] and characterized
by means of the synchronization indices ρ and λ 7 . The window length T was
varied between 2 and 20 s; the results are robust with respect to this varia-
tion. In search of corticomuscular synchronization (CMS), an EMG signal was
taken as a reference signal. Investigation of cortico-cortical synchronization

6 The EMG data were preprocessed in a standard way (cf. [63]) so that the resulting
signal represents the time course of the muscular contraction. Then both EMG and
MEG are band-pass filtered; the filter parameters are chosen in such a way that
only the power around the main frequency, or around the main frequency and its
second harmonics is preserved. The presented results correspond to the following
parameters: bandpass of EMG signals: 5-7 Hz, bandpass of MEG signals: 5-7 and
10-14 Hz (for quantification of 1:1 and 1:2 locking, respectively). The results are
robust with respect to variations of the band edges of all filters used; the usage of
two-band filters (e.g., 5-7 Hz plus 10-14 Hz) produces consistent results.
7 Computation of both indices gives consistent results.
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Fig. 11. An original and filtered MEG signal (from a channel over the left sensori-
motor cortex) (a) and its power spectrum (c). The original and preprocessed EMG
signal of the right flexor digitorum muscle (b) and its power spectrum (d).

(CCS) was done by choosing for reference one of the MEG channels over the
left sensorimotor cortex.

The main results are shown in Figs. 12,13. Pronounced tremor activity starts
after ∼ 50 s (Fig. 12a). It involves the coordinated activation and deactivation
of flexor and extensor muscles that is reflected by antiphase locking of their
EMG activity (Fig. 12b). This pereferal coordination may be a consequence of
CMS or/and CCS — that is actually the hypothesis we are testing. Therefore,
it is convenient to use the synchronization measures for characterization of the
time course of the tremor activity. Then, one can verify whether this coordi-
nation reflects the time course of synchronization. Indeed, during the epoch
of the significant tremor activity, corticomuscular as well as cortico-cortical
synchronization were also observed. Namely, the activity of both sensorimotor
cortex and premotor areas are 1 : 2 phase locked with the EMG activity of
both flexor and extensor muscles (Figs. 12c and 13), whereas the activities of
these two brain areas are 1 : 1 locked (Fig. 12d). It is important, that when
the strength of peripheral coordination decreases during the last ∼ 50 s, the
strength of CMS and CCS is also reduced. Another important observation is
that the onset of CCS precedes initiation of the tremor. These results con-
firm the sequential activation of motor cortex and tremor bursts revealed by
Volkmann et al. [63] 8 and, thus, support the hypothesis of a central oscillator
responsible for the generation of the Parkinsonian tremor.

Moreover, the phase analysis allows to localize the brain areas with MEG activ-
ity phase locked to tremor activity from noninvasive measurements (Fig. 13).

8 This conclusion is based on their MEG study, animal experiments and recordings
during neurosurgery in Parkinsonian patients.
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Fig. 12. (a): EMG of the right flexor muscle (RFM, upper trace) and an MEG over
the left sensorimotor cortex (LSC) (lower trace). (b) 1 : 1 coordination between
right flexor and extensor muscles: the distribution of the cyclic phase difference
Ψ1,1 computed in the running window [t − 5, t + 5] is shown as a gray-scale plot,
where white and black correspond to minimal and maximal values, respectively
(upper plot); the lower plot shows the corresponding synchronization index ρ1,1. (c)
1 : 2 corticomuscular synchronization: time course of the distribution of the cyclic
phase difference Ψ1,2 between MEG signal from the LSC and EMG of the RFM
(uppermost plot) and of the corresponding indices ρ1,2 and λ1,2; for comparison,
1:1 synchronization index ρ1,1 between LSC and RFM is shown below. (d) 1 : 1
cortico-cortical synchronization between LSC and a premotor MEG channel. Dashed
line indicates the value of ρ1,1 corresponding to 99.9th percentile of the surrogates
(see Discussion).

The main focus of the 1 : 2 synchronization is located over the contralat-
eral sensorimotor cortex. Additionally, this type of locking is observed over
premotor, frontal, contralateral parietal and contralateral temporal areas. In
contrast to the 1 : 2 locking, the 1 : 1 synchronization is much weaker, and is
observed over contralateral sensorimotor, parieto-occipital and frontal areas.
All areas which are 1 : 2 locked with the tremor are also 1 : 1 locked among
each other.
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Fig. 13. Time dependence of the synchronization index ρ1,2 characterizing 1 : 2
locking between the EMG of the right flexor muscle (reference channel, plotted in
the lower right corner) and all MEG channels. Each rectangle corresponds to an
MEG sensor; time axis spans 310 s and y-axis scales from 0 to 0.25. The head is
viewed from above, ‘L’ and ‘R’ mean left and right (see the “head” in the upper right
corner). The upper and lower gray regions corresponds to premotor and contralateral
sensorimotor areas respectively. The results are similar for the extensor muscle.

6 Stroboscopic technique: Application to cardiorespiratory inter-
action

In this Section we present the synchronization analysis of cardiorespiratory
interaction in humans. The data we analyse, namely electrocardiogram (ECG)
and respiratory signal, were already introduced in Fig. 4. The complexity of
this case is related to the following features:

• the time series have essentially different forms (respiration is a narrow-band
signal, while ECG can be reduced to the spike train);

• the characteristic time scales of two signals are different (there are always
several heartbeats per respiratory cycle) and vary essentially within one
experimental record; therefore we expect (and we indeed observe it) syn-
chronization of some high order n : m and transitions between different
synchronous states;

• synchronization is probably related to modulation of the heartrate by res-
piration, so that stroboscopic methods suitable for the detection of n : m
locking from nonstationary data are required.

These features make the problem a very useful example for comparison of
different analysis techniques.
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6.1 Cardiorespiratory interaction

The human cardiovascular and respiratory systems do not act independently;
their interrelation is rather complex and still remains a subject of physiological
research (see, e.g. [20,64] and references therein). As a result of this interaction,
in healthy subjects the heart rate normally increases during inspiration and
decreases during expiration, i.e., the heart rate is modulated by a respiratory
related rhythm. This frequency modulation of the heart rhythm (see Fig. 14)
is known for at least a century and is commonly referred to as “respiratory
sinus arrhythmia” (RSA). It is a well-studied phenomenon, see, e.g. [65–67].
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Fig. 14. An example of pronounced respiratory sinus arrhythmia: the heart rate
(a) is modulated by a respiratory related rhythm. The respiratory signal (arbitrary
units) is shown in (b).

The interaction between the cardiovascular system and respiration involves a
large number of feedback and feed-forward mechanisms with different charac-
teristic time scales. Definitely, it cannot be simply viewed at as unidirectional
modulating action of respiration on the cardiovascular signal. Nevertheless,
this modulation (RSA) is almost always observed in the data and therefore
should be accounted for.

6.2 The experimental data and preprocessing

Here we report the results by Schäfer et al. [29,30], where the examinations
with 8 healthy volunteers (14 to 17 years, high performance swimmers, 4 male,
4 female) were performed. The subjects were laying at rest and no constraints
like paced respiration or mental exercising were used.

The electrocardiogram (ECG) was registered by standard leads and respi-
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Fig. 15. The data for subject A: time course of R-R (interbeat) intervals (a) and
of the instantaneous frequency f(t) of respiration (b) clearly demonstrate the non-
stationarity of the time series. Similar data for subject B are shown in (c) and
(d).

ration was measured simultaneously by a thermistor at the nose, while res-
piratory abdominal movements were registered for control. The duration of
each record is 30 minutes. All signals were digitized with 1000 Hz sampling
rate and 12 bit resolution. For the analysis of the heart rate the times of R-
peaks in the ECG (Fig. 4a) were extracted by a semi-automatic algorithm
with manual correction. Only data sets without extrasystoles were used for
the subsequent analysis. The respiratory signals were visually inspected and, if
required, preprocessed. After low-frequency trend elimination, a second-order
Savitzky-Golay filter [68] was applied to remove high frequency noise.

Here we describe two representative data sets (Subjects A and B); the data
used for the analysis are shown in Figs. 15. We note that subject B exhibits
essentially more pronounced RSA: the average amplitude of the modulation
is ≈ 4 times larger than that for subject A.
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6.3 Cardiorespiratory synchrogram

First we present a graphic tool based on the stroboscopic technique. Here we
use the phase stroboscope and observe the phase of the one oscillators at the
instants of time when the phase of the second one attains a certain value. For
the study of cardiorespiratory interaction the natural way is to make use of
the fact, that ECG can be reduced to a point process. Hence, we observe the
phase of the respiratory signal φr at the times tk of appearance of k-th R-peak,
and plot this phase versus tk. In the noise-free case of n : 1 synchronization,
we would observe n distinct values of the respiratory phase so that such a
plot would exhibit n horizontal lines. Noise smears out these lines, and some
bands are expected to be observed instead. To look for n : m locking we use
the wrapping of the respiratory phase into [0, 2πm] interval, i.e. consider m
adjacent oscillations as one cycle, and plot

ψm(tk) =
1

2π
(φr(tk) mod 2πm) (20)

versus tk; we refer to this plot as cardiorespiratory synchrogram [29], see
Fig. 16.
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Fig. 16. Principle of the phase stroboscope, or synchrogram. Here a slow signal (a)
is observed in accordance with the phase of a fast signal (c). Measured at these
instants, the phase of the slow signal wrapped modulo 2πm, (i.e., m adjacent cycles
are taken as a one longer cycle) is plotted in (d); here m = 2. In this presentation
n : m phase synchronization shows up as n nearly horizontal lines in (d).

An important feature of this graphic tool is that, in contrast to the phase dif-
ference plots, only one integer parameter m has to be chosen by trial. More-
over, several synchronous regimes can be revealed within one plot, and the
transitions between them can be traced. Indeed, if due to nonstationarity the
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coupled systems exhibit a transition from, e.g. 3 : 1 to 5 : 2 locking, then this
is reflected in the proposed presentation with m = 2 as a transition from a 6-
to a 5-line structure.

A very important property of the synchrogram is that it is equally effective
in both cases of synchronization either by external or parametric forcing [30],
see Fig. 17.
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Fig. 17. Different efficiency of straightforward analysis of the relative phase and syn-
chrogram technique in the case of synchronization via external forcing (a,b,c) and
modulation (d,e,f); 3 : 1 locking is taken here as an example. In the first case point
events (“heartbeats”) occur at three equally spaced values of the (“respiratory”)
phase. These values are shown by black points on the circle (a) and the correspond-
ing radii. The noise smears these values, this is illustrated by the gray band around
the radii. In this case, the distribution of the cyclic relative phase shows a single
maximum (b). In the case of modulation, the events are not equally distributed on
the circle (d) and the respective distribution (e) has three maxima and is essen-
tially broader than the one shown in (b). As a result, the synchronization seems to
be not well-expressed. Nevertheless, the synchrograms (c) and (f) efficiently reveal
synchronization in both cases. The difference between synchronization via external
forcing or modulation shows up by different distances between the horizontal bands
in these plots.

Example of phase locking: subject A

The sequence of R-R intervals and frequency of respiration for subject A are
presented in Fig. 15; nonstationarity is the essential feature of the data. First
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we analyze the generalized phase difference ϕn,m for different values n and
m (Fig. 18), as well as instantaneous frequency ratio (not shown). The latter
indicates the possibility of 5 : 2 locking within the first ≈ 300s and of 3 : 1
locking appearing after ≈ 750s 9 . From the analysis of relative phase only, we
cannot reliably confirm the occurrence of synchronized epochs. Indeed, ϕ3,1

exhibits some plateaus interrupted by phase slips only for the last 400s (see
inlet in Fig. 18); ϕ5,2, as well as the values of relative phase for other locking
ratios, displays no plateaus in this presentation.
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Fig. 18. Generalized phase difference and frequency ratio for subject A. Relative
phase ϕ3,1 (a) shows some indication for 3 : 1 phase locking. For a comparatively
short period of time one can see plateaus in the plot of ϕ3,1 vs. time, interrupted by
phase slips (see inlet). The indication for the locking is confirmed by synchronization
indices γ3,1 and λ3,1 shown in (b) by bold and solid line, respectively. The time
dependence of ϕ5,2 (c) remains approximately constant during first 300s but displays
no distinct plateaus, as can be seen from the zoomed plot (inlet). Nevertheless, the
index λ5,2 indicates some level of synchronization (d), solid line, while the index γ5,2

(bold line) is practically zero.

The presence of 3 : 1 locking becomes more evident if we analyse the phase
difference statistically, i.e. consider the distribution of the cyclic relative phase
Ψ3,1 (cf. Eq. (8)). As the data are nonstationary, we compute this distribution
in a running window (Fig. 19); the preference of a certain value of Ψ3,1 within
the last ≈ 900s is clearly seen.

Computation of synchronization indices γn,m and λn,m confirms the phase

9 As the precision of computation of instantaneous frequencies in case of noisy
data is rather poor, this method can be considered only as an auxiliary one. Its
advantage is that there is no need to search for appropriate values of n and m,
moreover, an approximately constant value of the ratio can be used for estimation
of these integers.
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Fig. 19. Distribution of the cyclic relative phase Ψ3,1/2π calculated in a running
window (400 heartbeats) and coded by gray scales also gives some indication of
synchronization in the time interval 600 – 1400s. Black color corresponds to the
maximal values.

locking. We note that for the 3 : 1 locking both indices give similar results,
whereas the 5 : 2 locking within the first part of the records is indicated by
the conditional probability index only.
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Fig. 20. (a) Cardiorespiratory synchrogram (CRS) of subject A, showing the transi-
tion from a five-band structure (5 : 2 locking) to a six-band structure (3 : 1 locking).

The next step is to perform the stroboscopic analysis of the respiratory phases
as described in. The cardiorespiratory synchrogram (CRS) clearly exhibits 6
horizontal lines within the last ≈ 1000s (Fig. 20); this is confirmed by the
respective distribution (phase density histogram) showing 6 well-expressed
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peaks. This presentation makes the presence of the 3 : 1 phase locking in the
data quite evident.

Example of frequency locking: subject B

Within the first ≈ 300s the CRS for subject A (Fig. 20) has a clear 5-band
structure. These bands are not horizontal, hence the distribution of ψ2 is prac-
tically uniform, so that we cannot speak of phase locking. Nevertheless, the
occurrence of these bands shows that, on average, two adjacent respiratory cy-
cles contain 5 heartbeats; this may be considered as an indication of frequency
locking. This indication is also supported by the conditional probability index
λ5,2 (Fig. 18d).

−200

−100

0

100

ϕ 5,
2/2

π

(c)

(b)

(d)

 0

 100

 200

 300

ϕ 3,
1/2

π

(a)
400 600 800 1000 1200

60

80

100

0 200 400
−10

0

10

0.00
0.15
0.30

γ 3,
1,λ

3,
1

1200 1400 1600 1800
−180
−170
−160
−150

0 500 1000 1500
time [sec]

0.00
0.25
0.50

γ 5,
2,λ

5,
2

Fig. 21. Subject B. Relative phases ϕ3,1 (a) and ϕ5,2 (c) show some indication of
3 : 1 and 5 : 2 synchronization, respectively. This is consistent with the values
of synchronization indices (b) and (d). Although the plateaus in the time course
of the relative phase are not very distinct (see inlets in (a) and (b)), statistically
understood 3 : 1 phase locking can be confirmed by means of CRS (see Fig. 22).
Note that within the last 600s the generalized phase difference fluctuates around a
constant level, indicating frequency locking on average; this indication is supported
by a high value of the conditional probability index λ5,2.

Another illustrative example can be found in the data of subject B; these data
were already introduced in Fig. 15b. The analysis of relative phase and syn-
chronization indices (Fig. 21) indicates epochs of 3 : 1 and 5 : 2 synchroniza-
tion. The CRS plot confirms that we encounter statistical 3 : 1 phase locking
within the time interval ≈ 400−1200s (Fig. 22). The interval 1200−1800s rep-
resents frequency locking; the relative phase ϕ5,2 fluctuates around a constant
value, so that on average the frequency ratio fh/fr = 5 : 2. Although we can
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Fig. 22. (a) Cardiorespiratory synchrogram (CRS) of subject B demonstrates 6-band
structure in the range 400–1200s confirming 3 : 1 phase locking. Note that there
is no phase locking in the statistical sense in those intervals where the generalized
phase difference (Fig. 21c) indicates 5 : 2 phase locking.

find some short epochs with 5 distinct bands (e.g. around t = 1400s), and the
distribution of ψ2 is not uniform, we cannot with confidence speak of phase
locking in this case. From the other side, long lasting coincidence of frequen-
cies by pure chance seems to be very unlikely. This regime probably arises due
to dominating role of modulating influence of respiration on the heartrate (cf.
model example Eq. (13)). We remind, that subject B has considerably higher
RSA than subject A.
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7 Discussion

7.1 Is it really synchronization?

An important issue is interpretation of the results of the phase analysis. Here
we have to be aware of two problems:

• Can we be sure that the patterns of the relative phase, described in the sec-
tions above, indeed indicate synchronization, and, respectively, underlying
nonlinear dynamics?

• How reliable is this indication?

Before we address these questions, we remind that the synchronization transi-
tion in noisy systems is smeared. Next, as we already stressed, the relation be-
tween phases indicates, strictly speaking, the presence of interaction between
systems, but not necessarily means that they are synchronized. Finally, our
synchronization approach to data analysis is based on certain assumptions
that might be not always fulfilled. All in all, we can never unambiguously
state that we have observed synchronization; nevertheless, strong indications
in favour of such a conclusion can be sometimes found.

As synchronization is not a state, but a process of adjustment of rhythms due
to interaction, we cannot validate its existence if we do not have access to
the system parameters and cannot check experimentally that the synchronous
state is stable towards variation of the parameter mismatch within a certain
range (i.e. if we cannot plot the frequency vs. detuning curve). If we are not
able to do such experiments, but just have some data sets registered under free-
running conditions, the only way to get some confirmation (but certainly not
a proof) on the existence of synchronization is to make use of the fact that the
data are nonstationary. Indeed, we can trace the variation of the instantaneous
frequencies of both signals and their relation with time. If we find some epochs,
as in the case of cardiac and respiratory data, where both frequencies vary,
but their relation remains stable (Fig. 23), this can be considered as a strong
indication in favor of our conclusion.

Another indication that also can be obtained using the fact of nonstationarity
of the data is the presence of several different n : m epochs within one record.
Indeed, one can argue that observed phase or frequency locking of, e.g. order
3 : 1, could be due to the coincidence of frequencies of the uncoupled systems.
Nevertheless, occasional coincidence of frequencies having the ratios exactly
corresponding to neighboring Arnold tongues seems to be very unlikely.

If the data are rather stationary and we are not able to find such epochs, the
situation is more difficult. Suppose that the distribution of the relative phase
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Fig. 23. A transient epoch within the data of subject A confirms the existence
of synchronization. The periods of cardiac (R-R) and respiratory cycles (T) are
shown in (a) and (b), respectively. After a short epoch of non-synchronous behavior
(1150–1200s) the frequencies of heart rate and respiration change, probably due to
influence of a certain control mechanism, and become locked, i.e., fr/fh ≈ 1/3. In
the next 50s we observe that, although both frequencies decrease, this ratio remains
almost constant (c). This means that one of the systems follows the other one, i.e.,
synchronization takes place. 3 : 1 phase locking is also clearly seen from CRS (d).

for such a bivariate record is non-uniform. Can it just happen due to an occa-
sional coincidence of frequencies? From the theory and the simulation of the
model example (Eq. (10)) we know that even if the frequencies of uncoupled
oscillators are equal, the distribution of Ψn,m, computed on a sufficiently long
time scale, has to be nearly uniform due to the diffusion of the phase. Cer-
tainly, occasionally one can find short epochs where phases seem to be locked.
How can we estimate what is “short” and “long” in this context?

From the first sight, a natural way to address this problem is to use the sur-
rogate data techniques [69,28]. However, we see some serious problems in this
approach. The usual formulation of the null hypothesis that is used for nonlin-
earity tests is to consider a Gaussian linear process [70,71] with a power spec-
trum that is identical to that of the tested signal; more sophisticated methods
[72] imply also preservation of the probability distribution. A modification
of this null hypothesis for the tests for synchronization — a consideration
of two surrogate signals that preserve the linear cross-correlation between the
original data — seems to be not sufficient. Indeed, due to the definition of syn-
chronization, we are interested in the relation between instantaneous phases,
whereas the variations of amplitudes and their interrelation are of no impor-
tance. The usual way to construct surrogates (the randomization of Fourier
phases) mixes the phase and amplitude properties, transforming the variation
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of instantaneous phase into the variation of instantaneous amplitude and vice
versa. Moreover, the signals generated by self-sustained oscillators possess cer-
tain properties of the distribution of instantaneous amplitudes (see [73] and
references therein), and this distribution is destroyed by the Fourier phase
randomization.

Although we cannot give a general recipe how to estimate the reliability of
phase analysis, some empirical methods can be used in particular experiments.
So, in the above described MEG study [49,49] the surrogates were constructed
by taking either white noise or empty room measurements (instrumental noise)
and filtering them with the same band-pass filter as the data. The 95th
percentile of the distribution of a synchronization index for surrogates was
taken as the significance level. Afterwards, the synchronization indices were
re-calculated in accordance to this level, e.g. ρn,m → max{ρn,m − ρ̃, 0}, where
ρ̃ is the significance level.

7.2 Synchronization versus coherence

Very important question is the relation of the synchronization analysis to the
cross-spectrum techniques (coherence estimates) and to mutual information
approach that are widely used, e.g. for the analysis of brain activity [74–76].
This problem requires a systematic study for different types of coupling; here
we present only preliminary results.

First, we mention that synchronization is not equivalent to correlation (coher-
ence). Indeed, if two systems synchronize, their signals are correlated. On the
contrary, coherence does not necesserely show the presence of synchronization;
it may be for example caused by mixing of signals (see Fig. 1). This scheme
imitates the real situation: e.g., each MEG sensor measures signals originating
from more than one area of neuronal activity. To simulate this, we construct
artificial signals u = (1 − µ)x1 + µx2 and w = µx1 + (1 − µ)x2; where x1

and x2 are the solutions of Eq. (10) for the parameters D = 0.2, µ = 0.02
and ε = 0, i.e. they are the outputs of two uncoupled Rössler oscillators. This
mixture of signals does not lead to a spurious detection of synchronization,
i.e. the relative phase is not bounded, although u and w are correlated: the
cross-spectrum analysis by means of the Welch technique with the Bartlett
window indeed reveals significant coherence γ2 = 0.43.

The difference between the results of phase analysis and coherence can be
also demonstrated with real data. In Fig. 24 we present the results of cross-
spectrum analysis of all the MEG channels and the reference channel that was
the EMG of the flexor muscle. Each rectangle in the plot shows the coherence
between the respective MEG channel and the reference one. Contralateral
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sensorimotor MEG signals are coherent with EMG, in accordance with the
concepts known in neuroscience [63]. Nevertheless, one can also see tremor
coherent MEG activity extended over the right hemisphere in contradiction
to this concept. Insufficiency of the coherence technique can additionally be
seen from the fact that MEG channels overlying sensorimotor and premotor
areas are coherent with practically all other MEG channels. Comparing Fig. 24
with the results of the synchronization analysis (Fig. 13) we conclude that the
latter technique allows better localization of the tremor related brain activity.
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Fig. 24. Results of the cross-spectrum analysis between EMG of the right flexor
muscle (reference channel) and all MEG channels. The coherence function γ2 is
plotted vs. frequency. Each rectangle corresponds to an MEG sensor; the x-axis
spans 2.5 to 25 Hz and y-axis scales from 0 to 0.75.
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8 Appendix: Instantaneous phase and frequency of a signal

8.1 Analytic signal and the Hilbert Transform

A consistent way to define the phase of an arbitrary signal is known in signal
processing as the analytic signal concept [77,40,78,79]. This general approach,
based on the Hilbert transform (HT) and originally introduced by Gabor in
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1946 [52], unambiguously gives the instantaneous phase and amplitude for a
signal s(t) via construction of the analytic signal ζ(t), which is a complex
function of time defined as

ζ(t) = s(t) + ısH(t) = A(t)eıφ(t) , (21)

where the function sH(t) is the HT of s(t)

sH(t) = π−1P.V.

∞∫

−∞

s(τ)

t− τ
dτ , (22)

and P.V. means that the integral is taken in the sense of the Cauchy principal
value. The instantaneous amplitude A(t) and the instantaneous phase φ(t)
of the signal s(t) are thus uniquely defined from (21). We note, that HT is
parameters free.

As one can see from (22), the HT can be considered as the convolution of
the functions s(t) and 1/πt. Due to the properties of convolution, the Fourier
transform SH(ω) of sH(t) is the product of the Fourier transforms of s(t)
and 1/πt. For physically relevant frequencies ω > 0, SH(ω) = −ıS(ω). This
means that the Hilbert transform can be realized by an ideal filter whose
amplitude response is unity, and the phase response is a constant π/2 lag at
all frequencies.

Although formally A(t) and φ(t) can be obtained for an arbitrary s(t), they
have clear physical meaning only if s(t) is a narrow-band signal, see the de-
tailed discussion in [79]. For narrow-band signals the amplitude A(t) coincides
with the envelope of s(t), and the instantaneous frequency corresponds to the
frequency of the maximum in the instantaneous spectrum.

We illustrate the properties of the Hilbert transform by the following examples.

Example 1: Damped oscillations. Let us take as the measured signals
free oscillations of linear

ẍ + 0.05ẋ + x = 0 (23)

and Duffing

ẍ + 0.05ẋ + x + x3 = 0 (24)

oscillators, and calculate from x(t) instantaneous amplitudes A(t) and frequen-
cies dφ/dt (Fig. 25). The amplitudes, shown as thick lines, are really envelopes
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Fig. 25. Free vibrations x(t) of the linear (a) and nonlinear (Duffing) (c) oscillators.
The instantaneous amplitudes A(t) calculated via Hilbert transform are shown by
thick lines. Corresponding instantaneous frequencies dφ/dt are shown in (b) and
(d).

of the decaying processes. The frequency of the linear oscillator is constant,
while frequency of the Duffing oscillator is amplitude-dependent, as expected.
Note, that although only about 20 periods of oscillations have been used, the
nonlinear properties of the system can be easily seen from the time series,
because frequency and amplitude are estimated in every point of the signal.
This method is used in mechanical engineering for identification of elastic and
damping properties of a vibrating system [80]. This example illustrate the
important property of the HT: it can be applied to nonstationary data.

Example 2: A chaotic signal. HT can be considered as a two-dimensional
embedding in coordinates s, sH . Let us choose as an observable the x coordi-
nate of the Rössler system. The phase portrait of this system in coordinates
x, xH is shown in Fig.26; one can see that it us very similar to the “true” por-
trait of the Rössler oscillator in coordinates x, y. Instantaneous amplitude and
phase are shown in Fig. 27. The phase φ grows practically linear, neverthe-
less small irregular fluctuations of that growth are seen. This agrees with the
known fact that oscillations of the system are chaotic, but the power spectrum
of x(t) contains a very sharp peak.

Example 3: Human electrocardiogram. As an example of a complex
signal we take a human ECG record (Fig. 28). We see that the point in the
s, sH-plane makes two rotations corresponding to the so-called R and T-waves,
respectively. (Small loops corresponding to the P-waves are not seen in this
magnification.) What is important, the trajectories in s, sH pass through the
origin, and therefore the phase is not always defined. We did not encounter
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Fig. 26. Phase portrait of the Rössler system in x− xH coordinates.
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Fig. 27. Solution of the Rössler system x(t) and its instantaneous amplitude A(t)
(thick line) (a). Instantaneous phase φ grows practically linear (b), nevertheless
small irregular fluctuations are seen (c).

this problem in the previous examples, because of the simple structure of the
signals there. Indeed, the normal procedure before computing the HT is to
subtract the mean value from the signal. Often this ensures that trajectories
go around the origin; we implicitly used this fact before. In order to compute
the phase for the cardiogram, we have to transfer the origin to the point s∗, s∗H
and compute the phase as

φ = arctan

(
s− s∗

sH − s∗H

)
. (25)
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Definitely, in this way we loose the unambiguity in the determination of phase:
now it depends on the choice of the origin. Two reasonable choices are shown in
(Fig. 28c) by two arrows. Obviously, depending on the new origin in this plane,
one cardiocycle (interval between two heartbeats) would correspond to the
phase increase of either 2π or 4π. This reflects the fact that our understanding
of what is “one oscillation” depends on the particular problem and our physical
intuition.
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Fig. 28. Human ECG (a) and its Hilbert transform (b) and ECG vs its Hilbert
transform (c). Determination of phase depends on the choice of the origin in the
(s, sH) plane; two reasonable choices are shown in (c) by two arrows.

8.2 Numerics: hints and know-hows

An important advantage of the analytic signal approach is that the instan-
taneous phase and the amplitude can be easily obtained from experimentally
measured scalar time series.

Computing HT in the frequency domain. The easiest way to compute
the HT is to perform the FFT of the original time series, shift the phase
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of every frequency component by −π/2 10 and apply the inverse FFT. Zero
padding should be used to make the length of the time series suitable for the
FFT. To reduce the boundary effects, it is recommended to eliminate at least
10 quasiperiods at the beginning and the end of the signal. Such a computation
with double precision allows to obtain the HT with the precision of about 1%.
(The precision was estimated by computing the variance of s(t) + H2(s(t)),
where H2 means that HT was performed twice; theoretically s(t)+H2(s(t)) ≡
0.)

Computing HT in the time domain. Numerically, this can be done via
convolution of the experimental data with a pre-computed characteristic of
the filter (Hilbert transformer) [40,78,81]. Such filters are implemented, e.g.
in the software packages MATLAB [81] and RLAB (public domain, URL:
http://www.eskimo.com/∼ians/rlab.html). Although HT requires computa-
tion on the infinite time scale, i.e., the Hilbert transformer is an infinite im-
pulse response filter, the acceptable precision of about 1% can be obtained
with the 256-point filter characteristic. The sampling rate must be chosen in
order to have at least 20 points per average period of oscillation. In the process
of computation of the convolution L/2 points are lost at both ends of the time
series, where L is the length of the transformer.

Computing and unwrapping phase. The convenient way to compute
the phase is to use the functions DATAN2(sH , s) (FORTRAN) or atan2(sH , s)
(C) that give the cyclic phase in the [−π, π] interval. The relative phase, or
phase difference of two signals s1(t) and s2(t), can be obtained via the Hilbert
transform as

φ1(t)− φ2(t) = arctan
sH,1(t)s2(t)− s1(t)sH,2(t)

s1(t)s2(t) + sH,1(t)sH,2(t)
. (26)

For the detection of synchronization it is usually necessary to use the phase
that is defined not on the circle, but on the whole real line. For this purpose
the phase (or relative phase) can be unwrapped by tracing the ≈ 2π jumps in
the time course of φ(t).

Sensitivity to low-frequency trends. We discussed already that phase
is well defined only if the trajectories in the s, sH-plane always go around the
origin. This may be violated if the signal contains low-frequency trends, e.g.

10 This can be conveniently implemented by swapping the imaginary and real parts
of the Fourier transform: Re(ωi) → tmp, Im(ωi) → Re(ωi), -tmp → Im(ωi), where
tmp is some dummy variable.
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due to the drift of the zero level of the measuring equipment. If, as the result,
some trajectory misses the origin, this oscillation will not be counted as a
cycle, and 2π will be lost in the overall increase of the phase. To illustrate
it, we add an artificial trend to the ECG signal; the embedding of this sig-
nal in coordinates s, sH is shown in Fig. 29, to be compared with the same
presentation for the original data in Fig. 28. Obviously, the origin denoted in
Fig. 28 by the first arrow would be in this case a wrong choice. To avoid these
problems, we recommend always to plot the signal versus its HT and to check
whether the origin is chosen correctly.
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Fig. 29. An illustration of the sensitivity of the Hilbert transform to low-frequency
trends.

Instantaneous frequency. We note, that estimation of instantaneous fre-
quency f(t) of a signal is rather cumbersome. Direct approach, i.e., numerical
differentiation of φ(t), naturally results in very large fluctuations in the esti-
mate of f(t). Moreover, one may encounter that f(t) < 0. This happens not
only due to the influence of noise, but can result from a complicated form
of the signal. For example, some characteristic patterns in the ECG (e.g. the
T-wave) result in negative values of instantaneous frequency. From a phys-
ical point of view, we expect that the instantaneous frequency is a positive
function of time that varies slowly with respect to the characteristic period
of oscillations and has a sense of a number of oscillations per time unit. This
is especially important for the problem of synchronization where we are not
interested in the behavior of the phase on a time scale smaller than the charac-
teristic oscillation period. There exist several methods to obtain the estimates
of f(t) in accordance to this viewpoint; for a discussion and comparison see
[79,30].
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[66] Anrep, G., Pascual, W., and Rössler, R. (1936) Proc. Roy. Soc. (London) Ser.
B 119, 218–230.

[67] Schmidt, R., and Thews, G. (1983) Human Physiology (Springer, New York,
1983).

[68] Press, W. H., Teukolsky, S. T., Vetterling, W. T., and Flannery, B. P. (1992)
Numerical Recipes in C: the Art of Scientific Computing (Cambridge University
Press, Cambridge).

[69] Palus, M. (1997) Phys. Lett. A 227, 301–308.

[70] Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J. (1992)
Physica D 58, 77–94.

[71] Kurths, J., and Herzel, H. (1987) Physica D 25, 165.

[72] Schreiber, T., and Schmitz, A. (1997) Phys. Rev. Lett. 77, 635–638.

[73] Landa, P., and Zaikin, A. (1996) Phys. Rev. E 54, 3535–3544.

[74] Schack, B. (1999) in: Analysis of Neurophysiological Brain Functioning, ed
C. Uhl, Springer Series in Synergetics (Springer-Verlag, Berlin), pp. 230–251.

[75] Miltner, W., Braun, C., Arnold, M., Witte, H., and Taub, E. (1999) Nature
397, 434–436.

[76] Kwapien, J., Drozdz, S., Liu, L., and Ioannides, A. (1998) Phys. Rev. E 58,
6359–6367.

[77] Panter, P. (1965) Modulation, Noise, and Spectral Analysis (McGraw–Hill, New
York).

[78] Smith, M., and Mersereau, R. (1992) Introduction to Digital Signal Processing.
A Computer Laboratory Textbook (Wiley, New York)

[79] Boashash, B. (1992) Proc. of the IEEE 80, 520–568.

49



[80] Feldman, M. (1994) Mechanical Systems and Signal Processing 8, 119–127.

[81] Little, J., and Shure, L. (1992) Signal Processing Toolbox for Use with
MATLAB. User’s Guide (Mathworks, Natick, MA).

50


