
 

 
Carlo Piccardi – Politecnico di Milano – ver. 13/12/2021 1/41 

 
 
 
 

 
 
PHASE SYNCHRONIZATION AND COMPLETE SYNCHRONIZATION 
 
 
 
 
Carlo PICCARDI 
 
DEIB - Department of Electronics, Information and Bioengineering 
Politecnico di Milano, Italy 
 
email carlo.piccardi@polimi.it 
https://piccardi.faculty.polimi.it 
 

  



 

 
Carlo Piccardi – Politecnico di Milano – ver. 13/12/2021 2/41 

SYNCHRONIZATION 
 

Synchronization is the adjustment of the rhythms of two (or more) oscillators  
due to their weak interaction. 

 
 
Example: pendulum clocks (Huygens, 1665) 
 

               
 
When independent, the two clocks (=oscillators) have slightly different velocities. 
 
When connected through a common support (=weak interaction), the clocks have 
perfectly identical velocities (=rhythm adaptation). 
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The bifurcation scenario is that of an Arnold tongue: 
 

21, ff : frequencies of oscillators non interacting ( 21 fff −=∆ ) 
 

21, FF : frequencies of oscillators interacting ( 21 FFF −=∆ ) 
 

ε : coupling strength 
 

        
 

• Synchronization ( 0=∆F ) can only take place if || f∆  is sufficiently small. 
 

• Synchronization can take place with arbitrary small ε  (but needs smaller || f∆ ).  
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Observing two variables oscillating in a synchronous way does not necessarily imply 
the existence of two synchronized systems. 
 
Example: prey-predator system 
 
 
 
 
 
 
 
 
 
  
                       1x =n° of preys                  The oscillations disappear if the two 
                    2x =n° of predators                        variables are decoupled. 
 
 
The system is not separable into (non interacting) subsystems able to oscillate 
independently. 
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The synchronous behaviour of two systems cannot properly be qualified as 
synchronization if the interaction is “strong”. 
 
 

 
 
 
 
When the interaction can be qualified as weak? 
 
As a guideline, if a subsystem stops oscillating it should not prevent the other one 
to continue do it. 
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PHASE SYNCHRONIZATION OF PERIODIC OSCILLATORS 
 
Phase of periodic oscillators 
 
The phase )(tΦ  of an oscillator with period T  is defined as: 
 

constconst2)( +=+=Φ t
T

tt ωπ
 

 
 
 
 
 

)(tΦ  grows linearly in time. 
 

tt d)(dΦ=ω  is the (angular) frequency of 
oscillation. 
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Synchronization of a periodic oscillator with a periodic forcing input 
 
A periodic oscillator subject to a periodic forcing input )(tu : 
 
 

)(tuΦ =phase of the forcing input  
ttuu d)(dΦ=ω  

 
)(tΦ =phase of the oscillator 

tt d)(dΦ=ω  
 
 
We assume that uωω ≠  when there is no interaction ( 0)( =tu ).  
 
 
The oscillator is synchronized with the forcing input (phase synchronization, or 
phase locking) when 
 

const)()( =Φ−Φ tt u  
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Remark: const)()( =Φ−Φ tt u  if and only if  
 

uωω =  
 
Thus phase synchronization is equivalent to frequency synchronization (“frequency 
locking”). 
 
In the synchronized regime, the oscillator is “locked” to the frequency of the forcing 
input. The amplitude of the two signals may remain uncorrelated. 
 
 
 
More in general, we have frequency synchronization of order mn :  ( mn,  integers) 
when 
 

ωω mn u =           that is          const)()( =Φ−Φ tmtn u  
 
The oscillators counts n  periods for each m periods of the forcing input (𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑇𝑇𝑢𝑢). 
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Example: forced respiration by mechanical ventilation  
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Example: synchronization of various orders mn :  in a laser 
 

• Unforced system: light intensity oscillates with Hz40≅f .  
• Periodic (forcing) input (voltage signal) with various frequencies and amplitudes. 

 
 

Synchronization 1:2: 1 period of the oscillator every 2 
periods of the forcing input. 

 
 
 

 
 
 
 
 
Arnold tongues for synchronizations of various 
orders. 
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Synchronization of two periodic oscillators 
 
 
The influence is bidirectional: 
 
 

)(1 tΦ  = phase of oscillator 1 ( tt d)(d 11 Φ=ω ) 
)(2 tΦ  = phase of oscillator 2 ( tt d)(d 22 Φ=ω ) 

 
We assume that 21 ωω ≠  when there is no interaction ( 021 == uu ).  
 
 
The two oscillators are synchronized (in phase and frequency) when 
 

const)()( 21 =Φ−Φ tt           that is          21 ωω =  
 
Similarly we define the synchronization of order mn :  as 
 

21 ωω mn =           that is          const)()( 21 =Φ−Φ tmtn  
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Example: two athletes are jogging on a circular track, each 
one with her/his own (constant) speed: 
 
 

22

11

ω
ω

=Φ

=Φ



 

 
 
 
The system ),( 21 ΦΦ  has (generically) quasi-periodic behaviour. 
 
The athletes are friends: they try to synchronize their speeds by correcting their "base" speed 
with a term dependent on their distance: 
 

)sin(
)sin(

21222

12111

Φ−Φ+=Φ

Φ−Φ+=Φ

k
k

ω
ω




 

 
The phase difference 21 Φ−Φ=ϕ  evolves according to the 1st-order system:     
 

ϕωωϕ sin)( 2121 kk +−−=  
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The athletes are phase synchronized when 21 Φ=Φ  , that is 
 
 

  
21

21sin0
kk +

−
=⇔=

ωωϕϕ  

 
 
 
 
Provided )( 21 ωω −  is sufficiently small and/or )( 21 kk +  is sufficiently large, there are two 

equilibria ϕ , one asymptotically stable ( *ϕ ) and one unstable. 
 
 

When *ϕϕ = , the system ),( 21 ΦΦ  has periodic behaviour and   
 

consttt =Φ−Φ )()( 21  
 
But in general )()( 21 tt Φ≠Φ  (the two athletes run at the same 
speed but remain distant …). 
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Phase synchronization (= asymptotically 
stable periodic solution for ),( 21 ΦΦ ) 
takes place for  
 

1
21

21 <
+
−

kk
ωω

 

 
which defines an Arnold tongue.  
 
 
 
 
 
By varying )( 21 ωω −  and/or )( 21 kk + , the loss of synchronization takes place - by crossing 
the border of the Arnold tongue - through a saddle-node bifurcation involving two periodic 
solutions for ),( 21 ΦΦ , one asymptotically stable and the other unstable. 
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Example: synchronization of triode oscillators (Appleton, 1922) 
 
The two oscillators interact through the magnetic fields generated by the inductors (physically 
close each other). 
 
 

         
 
 
The results of the experiments ( 21 ωω −  as a function of the variable capacity C ) show an 
interval of C  where synchronization takes place. 
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Example: synchronization of electric generators 
 
 

 
 
 
 
The generators connected to the power distribution system keep the same speed of rotation 
(= frequency of the electric signal) thanks to synchronization. 
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Example: coordination of respiration rhythm and wing beat in the flight of migratory geese 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The distribution of the respiratory frequency shows evidence of a synchronization of order 1:3 
with the wing beat frequency (1 breath every 3 wing beats). 
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PHASE SYNCHRONIZATION OF CHAOTIC OSCILLATORS 
 
 
Phase of chaotic oscillators 
 
 
 
The phase )(tΦ  of a chaotic oscillator should 
be defined as a monotonically increasing 
variable which parameterizes the system 
solution. 
 
 
 
 
The average frequency of the oscillator is defined as  
 

t
t

t

)(lim Φ
=

∞→
ω  
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Phase of a chaotic oscillator: projecting the attractor 
 
It is possible when the attractor has a suitable geometric structure. 
 
Example: Rössler system 
 
 

xtx
ytyt ~)(

~)(arctan)(
−
−

=Φ  

 
 

 
 
 
 
 
For different parameter values, the above phase 
definition is impossible due to the shape of the attractor. 
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In some cases, defining the phase by attractor projection becomes possible after a 
variable change. 
 
 
Example: Lorenz system 
 
 
 
 
 

z  
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Phase of a chaotic oscillator: Poincaré section 
 
 
 

)(tΦ  is defined to (linearly) increase of π2  between two consecutive crossings of a 
suitably defined Poincaré section Π . 
 
 
 
 
 
 
 

1
1

,22)( +
+

<≤+
−

−
=Φ kk

kk

k tttk
tt

ttt ππ  
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A very practical Poincaré section corresponds to the maxima of one of the state 
variables. 
 
This allows one to associate a phase variable )(tΦ  to a (chaotic) time series (even if 
no model is available). 
 
 
Example: prey-predator system (Rosenzweig-MacArthur) 
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Synchronization of a chaotic oscillator by a periodic forcing input 
 
• )(tuΦ  is the phase of the periodic forcing input ( ttu d)(dΦ=ω ) 
• )(tΦ  is the phase of the chaotic oscillator ( ttt )(lim Φ=Ω ∞→ ) 

 
The oscillator is synchronized with the input (phase synchronization) if  
 

const)()( <Φ−Φ tt u  
 
The phase difference can vary in time, but should remain bounded. 
 
Remark: const)()( <Φ−Φ tt u  if and only if  
 

ω=Ω  
 
The oscillator is locked to the input frequency - but the amplitudes remain uncorrelated. 
 
 

The behaviour of the oscillator may remain chaotic. 
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Example: Rössler system with periodic forcing input 
 
 

)5.8(4.0
15.0

)cos(

−+=
+=

+−−=

xzz
yxy

tzyx





 ωε
 

 
 
Phase synchronization takes place in an Arnold tongue. 
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Stroboscopic diagram: dots highlight the state value at time instants multiple of ωπ2  (the 
period of the input). 
 

• Without synchronization (left) dots are spread in all the attractor (their phase is 
distributed between π−  and π ). 

 
• With synchronization (right) dots are concentrated in a narrow phase interval. 
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Example: lab experiment: Geissler tube with periodic forcing input 
 
 
When a constant 800V voltage is 
applied to the tube (Geissler type with 
helium), chaotic oscillations in the light 
intensity are recorded. 
 
 
 
 
 
 
 
 
The attractor reconstructed in the two-
dimensional space.  
The estimate of the fractal dimension is 

18.2=d . 
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Stroboscopic diagram of the system without input: 
 
dots are spread in all the attractor (their phase is 
distributed between π−  and π ). 
 
 
 
 
 
 
 
 
 
 
If a small sinusoidal input is applied (amplitude 

V4.0 , frequency Hz3850 ), phase synchronization 
is obtained. 
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Example: Lorenz system with periodic forcing input 
 
 

)cos()38(
28

)(10

txyzz
xzyxy

xyx

ωε++−=
−−=

−=







 

 
 
Frequency synchronization is "imperfect": 0≠−Ω ω  for all ω ,ε , but the difference ω−Ω  is 
very close to zero for some ω ,ε . 
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We observe long time intervals of “apparent” synchronization ( const)()( <Φ−Φ tt u ), 

interrupted by sudden “jumps” of π2  in )()( tt uΦ−Φ  (i.e., sometimes the oscillator "loses un 
turn" with respect to the input). 
 
 

 
 
 
In Lorenz system, this happens when the trajectory comes very close to the saddle

)0,0,0(),,( =zyx , where it can be trapped for arbitrarily long time (“saddle effect”). 
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Example: imperfect synchronization in the locomotion of Halobacterium salinarium  
 
It is a ciliated bacterium moving in a fluid, which commutes direction every few seconds. 
 

 
 
Under periodic light stimuli (=flash sequences) of amplitude A, the commuting intervals tend 
to synchronize with the period T  of the stimuli. 

 

           
                     5.121 == TA                                          5.124 == TA  
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However, for some ),( TA , some flashes fail to induce commutation. 
 
 

        
91 == TA  

 
 

 
61 == TA  

 
 
Imperfect synchronization: long intervals of “apparent” synchronization (=the bacterium 
commutes with the frequency of the input) are interrupted by sudden “phase jumps” (=the 
bacterium commutes only once for two flashes). 
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Synchronization of two chaotic oscillators 
 
 
 

)(1 tΦ  = phase of oscillator 1 
( ttt )(lim 11 Φ= ∞→ω ) 

 
)(2 tΦ  = phase of oscillator 2  

( ttt )(lim 22 Φ= ∞→ω ) 
 
We assume that 21 ωω ≠  when there is no interaction ( 021 == uu ).  
 
 
The two chaotic oscillators are synchronized (in phase and frequency) when 
 
 

const)()( 21 <Φ−Φ tt           that is          21 ωω =  
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Example: posture control in humans 
 
An equipped platform detects the anterior/posterior )(tx  and lateral )(ty  oscillations of a 
standing subject, under various experimental conditions (open eyes, closed eyes, etc.). 
 
 
The bivariate time series ( )(tx , )(ty ) 
(“stabilogram”) contain important 
information on the central nervous 
system. Typically, correlations among 

)(tx  and )(ty  denote the existence of 
pathologies. 
 
 
In this example, although the 
amplitudes of )(tx  and )(ty  vary in 
time and appear to be uncorrelated, 
the two oscillations are perfectly 
phase synchronized. 
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Example: synchronization of two food-chain systems (plants/herbivores/predators) 
 
 
The isolated tri-trophic food chain has 
chaotic behaviour. 
 
 

 
 
As the coupling 𝐷𝐷 (diffusive migration of herbivores 
and predators) increases, we observe: 
 

• no synchronization 
 

• phase synchronization (same average frequency, 
but uncorrelated amplitudes) 

 
• complete synchronization (same average 

frequency, same amplitudes) 
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COMPLETE SYNCHRONIZATION 
 
 
Consider two systems 1Σ  e 2Σ : 
 
 
• identical (same f ):  ),( uxfx ′′=′   ,  ),( uxfx ′′′′=′′  

 
• in chaotic regime when isolated ( 0)()( =′′=′ tutu  t∀ ) 

 
• interacting uni- or bi-directionally:   𝑢𝑢′ = 𝑔𝑔(𝑥𝑥′, 𝑥𝑥′′)   ,   𝑢𝑢′′ = 𝑔𝑔(𝑥𝑥′′, 𝑥𝑥′)    
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1Σ  and 2Σ  are completely synchronized if 
 

0)()(lim =′′−′
∞→

txtx
t

 

 
 
Remarks:  
 

• The definition implies that the “synchronized state” )()( txtx ′′=′  be asymptotically stable 
(at least locally). 

 
• Differently from phase synchronization (=same average frequency but amplitudes not 

necessarily correlated), complete synchronization implies the perfect coincidence of the 
behaviours of the two systems. 

 
• For obtaining complete synchronization, the interaction might be non “weak”. 

 
• Complete synchronization preserves the chaotic behaviour. 

 
• More in general, the two systems could be non identical but “similar” (e.g., same state 

equations but slightly different parameters). If so, the requirement is relaxed to 
 |𝑥𝑥′(𝑡𝑡) − 𝑥𝑥′′(𝑡𝑡)| < constant. 
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Example: synchronization of skewed tent maps 
 
 
 
Consider two 1st-order discrete-time systems  
("skewed" tent maps, 7.0=a ): 
 





≤≤−−
<≤

=
1 se)1()1(

0 se
)(

UaaU
aUaU

Uf  

 
 
 
Both systems (isolated) have chaotic dynamics. 
 
 
The two systems are coupled bi-directionally: 
 
 

))(()1())(()1(
))(())(()1()1(

tyftxfty
tyftxftx

εε
εε

−+=+
+−=+
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The parameter ε  is the coupling strength: 
 
 

0=ε  (no interaction) 
                                                                                      )(ty  

)(tx  and )(ty  evolve independently  
in chaotic regime. 
 
 
 
                                                                                                             )(tx  
 
 
 
 

2.0=ε  (weak interaction)                                                )(ty  
 

)(tx  and )(ty  show the tendency  
to synchronize.                                                
 
 
                                                                                                             )(tx  
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By numerical analysis: complete synchronization takes place for 228.0≅> cεε . 
 
With ε  slightly smaller than cε  (e.g. 

001.0−= cεε ) we detect intervals of 
apparent synchronization, interrupted by 
burst of de-synchronization 
("intermittencies"). 
 
 
 
 
 

3.0=ε  (complete synchronization) 
                                                                           )(ty  

)(tx  and )(ty  coincide in all time instants 
and fill the interval (0,1).                                               
 
 
                                                                                                   )(tx  
 

21=ε  gives the maximal interaction: we have )()( tytx =  from 1=t  (check the equations!) 
for all initial conditions (complete synchronization in finite time). 
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Example: lab synchronization of two Chua circuits 
 
Two circuits identical in theory (slightly different in practice, due to tolerances of the 
components) interact trough unidirectional coupling: 
 

 
 
The (adimensional) equations of the two systems are: 
 

yz
yyKzyxy

xhxyx

′−=′
′−′′+′+′−′=′

′−′−′=′

β

α







)(
))((

          

yz
zyxy

xhxyx

′′−=′′
′′+′′−′′=′′

′′−′′−′′=′′

β

α





 ))((
 

 
K  is the coupling strength. 
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Complete synchronization takes place above the critical value )2.1,1.1(∈= cKK . 
 
 
 

           
 
                           1.1=K                                                            2.1=K  
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