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Abstract

Synchronization of chaos refers to a process wherein two (or many) chaotic systems (either equivalent or
nonequivalent) adjust a given property of their motion to a common behavior due to a coupling or to a forcing
(periodical or noisy). We review major ideas involved in the 5eld of synchronization of chaotic systems, and
present in detail several types of synchronization features: complete synchronization, lag synchronization,
generalized synchronization, phase and imperfect phase synchronization. We also discuss problems connected
with characterizing synchronized states in extended pattern forming systems. Finally, we point out the relevance
of chaos synchronization, especially in physiology, nonlinear optics and 8uid dynamics, and give a review of
relevant experimental applications of these ideas and techniques. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

1.1. The concept of chaos synchronization

The origin of the word synchronization is a greek root (� F�� �� Go	o& which means “to share the
common time”). The original meaning of synchronization has been maintained up to now in the
colloquial use of this word, as agreement or correlation in time of diJerent processes [1].
Historically, the analysis of synchronization phenomena in the evolution of dynamical systems has

been a subject of active investigation since the earlier days of physics. It started in the 17th century
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with the 5nding of Huygens that two very weakly coupled pendulum clocks (hanging at the same
beam) become synchronized in phase [2]. Other early found examples are the synchronized lightning
of 5re8ies, or the peculiarities of adjacent organ pipes which can almost reduce one another to silence
or speak in absolute unison. For an exhaustive overview of the classic examples of synchronization
of periodic systems we address the reader to Ref. [3].
Recently, the search for synchronization has moved to chaotic systems. In this latter framework,

the appearance of collective (synchronized) dynamics is, in general, not trivial. Indeed, a dynamical
system is called chaotic whenever its evolution sensitively depends on the initial conditions. The
above said implies that two trajectories emerging from two diJerent closeby initial conditions separate
exponentially in the course of the time. As a result, chaotic systems intrinsically defy synchronization,
because even two identical systems starting from slightly diJerent initial conditions would evolve in
time in an unsynchronized manner (the diJerences in the systems’ states would grow exponentially).
This is a relevant practical problem, insofar as experimental initial conditions are never known
perfectly. The setting of some collective (synchronized) behavior in coupled chaotic systems has
therefore a great importance and interest.
The subject of the present report is to summarize the recent discoveries involving the study of

synchronization in coupled chaotic systems. As we will see, not always the word synchronization
will be taken as having the same colloquial meaning, and we will need to specify what synchrony
means in all particular contexts in which we will describe its emergence.
As a preliminary de5nition, we will refer to synchronization of chaos as a process wherein two

(or many) chaotic systems (either equivalent or nonequivalent) adjust a given property of their
motion to a common behavior, due to coupling or forcing. This ranges from complete agreement of
trajectories to locking of phases.
The 5rst thing to be highlighted is that there is a great diJerence in the process leading to synchro-

nized states, depending upon the particular coupling con5guration. Namely, one should distinguish
two main cases: unidirectional coupling and bidirectional coupling. In the former case, a global
system is formed by two subsystems, that realize a drive–response (or master–slave) con5guration.
This implies that one subsystem evolves freely and drives the evolution of the other. As a result, the
response system is slaved to follow the dynamics (or a proper function of the dynamics) of the drive
system, which, instead, purely acts as an external but chaotic forcing for the response system. In
such a case external synchronization is produced. Typical examples are communication with chaos.
A very diJerent situation is the one described by a bidirectional coupling. Here both subsystems
are coupled with each other, and the coupling factor induces an adjustment of the rhythms onto
a common synchronized manifold, thus inducing a mutual synchronization behavior. This situation
typically occurs in physiology, e.g. between cardiac and respiratory systems or between interacting
neurons or in nonlinear optics, e.g. coupled laser systems with feedback. These two processes are
very diJerent not only from a philosophical point of view: up to now no way has been discovered
to reduce one process to another, or to link formally the two cases. Therefore, along this report,
we will summarize the major results in both situations, trying to emphasize the diJerent dynamical
mechanisms which rule the emergence of synchronized features.
In the context of coupled chaotic elements, many diJerent synchronization states have been stud-

ied in the past 10 years, namely complete or identical synchronization (CS) [4–6], phase (PS) [7,8]
and lag (LS) synchronization [9], generalized synchronization (GS) [10,11], intermittent lag synchro-
nization (ILS) [9,12], imperfect phase synchronization (IPS) [13], and almost synchronization (AS)
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[14]. All these phenomena will be referred to in this report, along with the most relevant examples
in which their occurrence was found.
CS was the 5rst discovered and is the simplest form of synchronization in chaotic systems.

It consists in a perfect hooking of the chaotic trajectories of two systems which is achieved by
means of a coupling signal, in such a way that they remain in step with each other in the course
of the time. This mechanism was 5rst shown to occur when two identical chaotic systems are
coupled unidirectionally, provided that the conditional Lyapunov exponents of the subsystem to be
synchronized are all negative [6].
GS goes further in using completely diJerent systems and associating the output of one system

to a given function of the output of the other system [10,11].
Coupled nonidentical oscillatory or rotatory systems can reach an intermediate regime (PS),

wherein a locking of the phases is produced, while correlation in the amplitudes remain weak [7].
The transition to PS for two coupled oscillators has been 5rstly characterized with reference to the
REossler system [7].
LS is a step between PS and CS. It implies the asymptotic boundedness of the diJerence between

the output of one system at time t and the output of the other shifted in time of a lag time �lag [9].
This implies that the two outputs lock their phases and amplitudes, but with the presence of a time lag
[9].
ILS implies that the two systems are most of the time verifying LS, but intermittent bursts

of local nonsynchronous behavior may occur [9,12] in correspondence with the passage of the
system trajectory in particular attractor regions wherein the local Lyapunov exponent along a globally
contracting direction is positive [9,12].
Analogously, IPS is a situation where phase slips occur within a PS regime [13].
Finally, AS results in the asymptotic boundedness of the diJerence between a subset of the

variables of one system and the corresponding subset of variables of the other system [14].
The 5rst scenario of transition among diJerent types of synchronization was described for sym-

metrically coupled nonidentical systems and consisted in successive transitions between PS, LS and
a regime similar to CS when increasing the strength of the coupling [9].
The natural continuation of these pioneering works was to investigate synchronization phenomena

in spatially extended or in5nite dimensional systems [15–20], to test synchronization in experiments
or natural systems [21–32], and to study the mechanisms leading to desynchronization [33,34]. These
topics will be treated speci5cally in diJerent sections of this report.

1.2. Outline of the report

The present report is organized as follows.
In Section 2 we describe the complete synchronization phenomenon, both for low and for high-

dimensional situations, and illustrate possible applications of the introduced techniques in the 5eld
of communicating with chaos.
In Section 3 we move from identical to nonidentical systems, and summarize the concepts of

phase synchronization, lag synchronization, imperfect phase synchronization, and generalized syn-
chronization. We also describe a general transition scenario between a hierarchy of diJerent types
of synchronization for chaotic oscillators.
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In Section 4 we further extend to the case of structurally diJerent systems. Here, collective
dynamics may emerge in the case of a coupling between systems which are con5ned onto chaotic
attractors with diJerent structural properties. Analogies and diJerences with structurally equivalent
systems are pointed out.
In Section 5 we discuss the situation of uncoupled systems subjected to a common external

source, and we summarize the main results related to noise-induced synchronization. Furthermore,
we analyze the case of weakly coupled systems, where synchronization is enhanced by the action
of external noise.
Section 6 is devoted to the discussion of synchronization between space-extended systems. We

5rst describe the situation of a large ensemble of coupled chaotic elements, and then move to the
case of continuous space-extended systems, i.e. systems extended in space whose evolution is ruled
by partial diJerential equations.
Finally, in Section 7 we summarize the main synchronization features observed so far in laboratory

experiments and in natural phenomena, with a particular attention to the data analysis tools which
are nowadays used to detect epochs of synchronization in practical situations.

2. Synchronization of identical systems

2.1. Complete synchronization

As said in the Section 1, chaotic systems are dynamical systems that defy synchronization, due to
their essential feature of displaying high sensitivity to initial conditions. As a result, two identical
chaotic systems starting at nearly the same initial points in phase space develop onto trajectories
which become uncorrelated in the course of the time. Nevertheless, it has been shown that it is
possible to synchronize these kinds of systems, to make them evolving on the same chaotic trajectory
[4–6,35,36].
When one deals with coupled identical systems, synchronization appears as the equality of the

state variables while evolving in time. We refer to this type of synchronization as complete syn-
chronization (CS). Other names were given in the literature, such as conventional synchronization
[37] or identical synchronization.
In this section, we will discuss main properties of this kind of synchronization. While our discus-

sion will focus on continuous systems, most of the exposed ideas can be easily extended to discrete
systems, such as chaotic mappings.
As for the coupling, one has to distinguish between two diJerent situations. When the evolu-

tion of one of the coupled systems is unaltered by the coupling, the resulting con5guration is
called unidirectional coupling or drive–response coupling. On the contrary we will refer to bidi-
rectional coupling when both systems are connected in such a way that they mutually in8uence
each other’s behavior. Inside this classi5cation, the appearance and robustness of synchronization
states have been established by means of several diJerent coupling schemes, such as the Pecora and
Carroll method [6,36,38], the negative feedback [39], the sporadic driving [40], the active–passive
decomposition [41,42], the diJusive coupling and some other hybrid methods [43]. A description
and analysis of some diJerent coupling schemes is given in Ref. [44] in a single mathematical
framework.
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In the following we will concentrate our attention to explain the essential points of two particular
coupling schemes, namely the Pecora and Caroll (PC) method and the active–passive decomposi-
tion (APD) method. Furthermore, we will discuss the very relevant issue of the stability of the
synchronized motion.

2.2. The PC con9guration

Let us begin by considering a chaotic system whose temporal evolution is ruled by the following
equation:

ż = F(z) : (2.1)

Here z ≡ {z1; z2; : : : ; zn} is a n-dimensional state vector, with F de5ning a vector 5eld F :Rn → Rn.
The PC scheme consists in supposing the dynamical system of Eq. (2.1) to be drive decomposable,

i.e. to be divisible into three subsystems

u̇ = f(u; v)

v̇ = g(u; v)

}
driver ;

ẇ= h(u;w) }response ; (2.2)

where u ≡ {u1; u2; : : : ; um}, v ≡ {v1; v2; : : : ; vk}, w ≡ {w1; w2; : : : ; wl} and n = m + k + l. The 5rst
subsystem of Eqs. (2.2) de5nes the driver system, whereas the second subsystem of Eqs. (2.2)
represents the response system, whose evolution is guided by the driver trajectory by means of the
driving signal u.
In this framework, complete synchronization is de5ned as the identity between the trajectories of

the response system w and of one replica w′ of it ẇ′ = h(u;w′) for the same chaotic driving signal
(u(t)). The existence of CS implies that the response system is asymptotically stable (limt→∞ e(t)=
0; e(t) being the synchronization error de5ned by e(t) ≡ ‖w − w′‖). In other words, the response
system forgets its initial conditions, though evolving on a chaotic attractor.
Refs. [6,36] establish that this kind of synchronization can be achieved provided that all the

Lyapunov exponents of the response system under the action of the driver (the conditional Lyapunov
exponents) are negative (see Section 2.5). Such a condition can be met if u is a synchronizing
signal. However, given a chaotic system, not all possible selections of the driving signal lead to a
synchronized state, as we will show momentarily.
Let us build a PC drive–response con5guration with a drive system given by the Lorenz system

and with a response system given by the subspace containing the (x; z) variables [45]

ẋ = �(y − x)

ẏ =−xz + rx − y

ż = xy − bz


 driver ;

ẏ′ =−xz′ + rx − y′

ż′ = xy′ − bz′

}
response : (2.3)
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Fig. 2.1. Complete synchronization of system given by Eq. (2.3), dashed line (solid line) represents z (z′) in function of
time.

Table 2.1
Conditional Lyapunov exponents for diJerent drive–response con5gurations of the Lorenz system [27]

System Drive Response Lyapunov exponents

Lorenz x (y; z) (−2:5;−2:5)
� = 16; b= 4; r = 45:92 y (x; z) (−3:95;−16:0)

z (x; y) (+7:89× 10−3;−17:0)

Here �=16; r=45:92 and b=4, so as Eqs. (2.3) give rise to a chaotic dynamics. With this particular
choice of the driving, CS sets in rather soon as shown in the Fig. 2.1. It is important to remark
that the con5guration of Eqs. (2.3) is called a homogeneous driving con5guration, insofar as h ≡ g.
By splitting the main system of Eq. (2.3) in a diJerent way, CS could not exist. In Table 2.1

we report the conditional Lyapunov exponents for all possible drive–response subsystems into which
one can divide the Lorenz system. Only two choices induce the appearance of CS, namely (x; z)
driven by y and (y; z) driven by x. For the other possible choice ((x; y) driven by z), CS comes
out to be unstable. A detailed discussion over the CS features of the Lorenz system can be found
in Ref. [46].
While the PC con5guration is not the most general way to couple dynamical systems, this scheme

and the one considered in Ref. [5] were proposed with the idea of considering explicitly chaotic
synchronization as a new and important concept. Other previous and contemporary studies had
surfaced this idea in the analysis of arrays of coupled systems [4,47]. For a detailed discussion on
this latter situation we address the reader to Section 6 of the present report.
In the following section, before discussing the stability of the complete synchronized state, we

will describe an alternative coupling con5guration for a drive–response scheme.
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2.3. The APD con9guration

Ref. [41] introduced a very general driver–response scheme in order to construct identical chaotic
synchronized systems, called the active–passive decomposition method (APD). This method ex-
plicitly treats a chaotic autonomous system and rewrites it as a nonautonomous system

ẋ = f(x; s(t)) ; (2.4)

where s(t) is some driving signal s = h(x) or ṡ = h(x), and f :Rn → Rn. Again, the complete
synchronized state refers to the identity between the system of Eq. (2.4) and one replica (the
response system) that is driven by the same signal s(t). Note that this latter statement does not
exclude a chaotic behavior of x(t), since it is driven by a chaotic signal s(t).
In order to illustrate this con5guration, Ref. [41] analyzed the following scheme for a Lorenz

system

ẋ =−10x + s(t) ;

ẏ = 28x − y − xz ;

ż = xy − 2:666z (2.5)

driven by s(t)=h(x)=10y, and by the use of a Lyapunov function showed that the response system
synchronizes with its copy for all considered types of driving signal s(t).
While the PC scheme (previous section) allows for a given chaotic system only a 5nite number

of possible decompositions to produce synchronization, here the freedom to choose the driving signal
s(t) (or alternatively the function h(x)) makes the APD scheme very powerful and general, due
to its extreme 8exibility in applications.
The two synchronization schemes described here and several other drive–response con5gurations

have been used into the design of communication devices, which is perhaps the most promising
application of synchronized chaotic behavior [42,43,48–50]. For example, one can have two remote
systems behaving chaotically, but synchronized with each other through only one driving signal.
A sender can add a given message to the drive, thus masking the information from any third
party who wants to intercepts it. The receiver can extract the message by using the synchronization
error between the drive and the regenerated signal, where the message appears as desynchronization
episodes (see Section 7).

2.4. Complete synchronization for bidirectional coupling

A bidirectional coupling scheme between identical chaotic systems is tantamount to introducing
additional dissipation in the dynamics:

ẋ = f(x) + Ĉ · (y − x)T ;

ẏ = f(y) + Ĉ · (x− y)T : (2.6)

Here x and y represent the N -dimensional state vectors of the chaotic systems, while f is a vector
5eld f :Rn → Rn. Finally, Ĉ is a n × n matrix whose coeScients rule the dissipative coupling. T
represent matrix transposition.
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Fig. 2.2. The mean synchronization error 〈e〉 ≡ 〈√(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2〉 (o) and emax ≡ Max (e) (	) vs.
the coupling strength c for the system given by Eq. (2.7).

When increasing the coupling strength (the coeScients of Ĉ), system (2.6) displays a transition
to a complete synchronized state at a critical value of the coupling that depends on the particular
structure of the coupling matrix. In particular, when Ĉ = cÎ, both systems synchronize completely
for c¿ 1

2!L (!L being the largest Lyapunov exponent of the uncoupled chaotic systems [4]). The
reason for this transition is that the long-term behavior of the coupled systems is determined by
two counterbalancing strengths, namely the action of the instability of the synchronization manifold
and that of the diJusion. As a result, when the diJusion overcomes the instability, the systems
synchronize.
This coupling scheme can be illustrated by referring to a pair of bidirectionally coupled Lorenz

systems [45]

ẋ1;2 = �(y1;2 − x1;2) + c(x2;1 − x1;2) ;

ẏ 1;2 = (r − z1;2)x1;2 − y1;2 + c(y2;1 − y1;2) ;

ż1;2 = x1;2 − bz1;2 + c(z2;1 − z1;2) : (2.7)

Parameters are chosen to be � = 16:0; b= 4:0; r = 40:0 in order to produce a chaotic dynamics in
the uncoupled systems. For this choice, the Lyapunov exponents of each uncoupled Lorenz system
are !1 = 1:37; !2 = 0:0 and !3 = −22:37. Fig. 2.2 shows the mean synchronization error e de5ned
as the averaged distance to the synchronization manifold, i.e. the identity hyperplane (x = y), and
the maximum distance emax to this manifold as a function of the coupling strength c.
This coupling scheme (Eq. (2.6)) is eJective in completely synchronizing the dynamical vari-

ables of the chaotic systems, due to the additional dissipation introduced whenever they are not



10 S. Boccaletti et al. / Physics Reports 366 (2002) 1–101

following the same trajectory x1(t) 
= x2(t); x1 and x2 being the state vectors of the coupled systems
of Eq. (2.7).

2.5. The stability of the synchronized motion

Stability of the synchronized motion is a very relevant issue, and many criteria have been estab-
lished in the literature to cope with it. One of the most popular and widely used criterion is the
use of the Lyapunov exponents as average measurements of expansion or shrinkage of small dis-
placements along the synchronized trajectory. Along the present section, we will summarize this and
other criteria designed to characterize the stability of the complete synchronized state of identical
coupled chaotic systems and we will describe the transition between the nonsynchronized state and
the synchronized one.
The stability problem of identical coupled systems can be formulated in a very general way by

addressing the question of the stability of the CS synchronization manifold x ≡ y, or equivalently
by studying the temporal evolution of the synchronization error e ≡ y − x (x and y being the state
vectors of the coupled systems). The evolution of e is given by

ė = f(x; s(t))− f(y; s(t)) ; (2.8)

where x and y represent the state vectors of the response system and its replica. Eq. (2.8) can be
written in both PC and APD schemes, since it explicitly includes the driving signal s(t).
A CS regime exists when the synchronization manifold is asymptotically stable for all possible

trajectories s(t) of the driving system within the chaotic attractor. This property can be proved by
using stability analysis of the linearized system for small e

ė =Dx(s(t))e ; (2.9)

where Dx is the Jacobian of the vector 5eld f evaluated onto the driving trajectory s(t). Normally,
when the driving trajectory s(t) is constant (5xed point) or periodic (limit cycle), the study of
the stability problem can be made by means of evaluating the eigenvalues of Dx or the Floquet
multipliers [51,52]. However, if the response system is driven by a chaotic signal, this method will
not work.
A possible solution is calculating the Lyapunov exponents of system equation (2.9). In the context

of driver–response coupling schemes, these exponents are usually called conditional Lyapunov expo-
nents because they are the Lyapunov exponents of the response system under the explicit constrain
that they must be calculated on the trajectory s(t) [36,41]. Alternatively, they are called transversal
Lyapunov exponents because they correspond to directions which are transverse to the synchroniza-
tion manifold x ≡ y [43,53]. These exponents could be de5ned, for an initial condition of the driver
signal s0 and initial orientation of the in5nitesimal displacement u0 = e(0)=|e(0)| as

h(s0; u0)≡ lim
t→∞

1
t
ln
( |e(t)|

|e0|
)

= lim
t→∞

1
t
ln |Z(s0; t) · u0| ; (2.10)



S. Boccaletti et al. / Physics Reports 366 (2002) 1–101 11

where Z(s0; t) is the matrix solution of the linearized equation

dZ=dt =Dx(s(t))Z (2.11)

subject to the initial condition Z(0) = I. The synchronization error e evolves according to e(t) =
Z(s0; t)e0 and then the matrix Z determines whether this error shrinks or grows in a particular direc-
tion. In most cases, however, the calculation cannot be made analytically, and therefore numerical
algorithms should be used [54–56].
It is very important to emphasize that the negativity of the conditional Lyapunov exponents is only

a necessary condition for the stability of the synchronized state. The conditional Lyapunov exponents
are obtained from a temporal average, and therefore they characterize the global stability over the
whole chaotic attractor. Relevant cases exist where these exponents are negative and nevertheless the
system is not perfectly synchronized, thus indicating that additional conditions should be ful5lled to
warrant synchronization in a necessary and suScient way [57].
While this criterion has been successfully used in order to predict and study the stability of the

synchronized motion [6,36,42,43], it is in general hard to get accurate approximations of Lyapunov
exponents, so that the application of alternative criteria may be in order in practical cases.
The stability of a CS manifold can also be studied by the use of the Lyapunov function [41,48,58],

a method giving necessary and suScient conditions for stability. With reference to the study of
temporal evolution of the synchronization error e (Eq. (2.8)), the Lyapunov Function L(e) can be
de5ned as a continuously diJerentiable real valued function with the following properties:

(a) L(e)¿0 for all e 
= 0 and L(e) = 0 for e = 0.
(b) dL=dt¡0 for all e 
= 0.
If for a given coupled system one can 5nd a Lyapunov function, then the CS manifold is globally
stable.
To give an example of the use of this function, we follow Ref. [41] and consider the drive–response

system given by Eq. (2.5). Here, the vector (x; y; z) refers to the response and the vector (x′; y′; z′)
to its replica. One should note 5rst that the component of the synchronization error e1 ≡ x′ − x
converge to zero because ė1 =−10e1. Therefore, the evolution of the remaining two components for
the limit t → ∞, is given by

ė2 =−e2 − xe3 ;

ė3 = xe2 − 2:666e3 : (2.12)

One can show that the complete synchronization manifold is globally stable for any choice of the
driving signal s(t) considering L(e) ≡ e22 + e23 and showing that dL=dt =−2(e22 + 2:666e23), which
ful5lls both conditions de5ning a Lyapunov function.
Unfortunately, whether such functions exist and how one should construct them is known only

in a very limited number of cases, whereas a general procedure to obtain these functions is not yet
available.
A further criterion for the stability of synchronized states is given in Refs. [59,60]. The equation

of the linearized system for the synchronization error e (Eq. (2.8)) is divided into a time independent
part A and an explicitly time dependent part B(x; t)

e = A + B(x; t) : (2.13)
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Assuming that A can be diagonalized and transformed into the coordinate system de5ned by the
eigenvectors of A, the following suScient condition for the stability of the synchronization manifold
is obtained

− Re[!m]¿〈‖P−1BP‖〉 : (2.14)

Here, Re[!m] is the real part of the largest eigenvalue of A and P ≡ [v1; v2; : : : ; vd] where vj are
the eigenvectors of A. 〈•〉 denotes a time average along the driving trajectory. The reason why this
condition is only suScient relies in the fact that it is based in matrix norms. As a result, a driving
con5guration may fail the above condition and still produce stable synchronized motion.
We have addressed the stability problem of synchronized motion by referring to the stability

of the CS synchronization manifold, i.e. x = y. When we deal with nonidentical coupled systems,
similar stability criteria can be formulated, but additional problem will appear due to the more
complicate structure of the synchronization manifold. We will outline this problem in the next
section.
At this stage, let us summarize the validity of the stability criteria discussed above. Only Lyapunov

functions give a necessary and suScient condition for the stability of the synchronization manifold,
whereas the negativity of the conditional Lyapunov exponents provides a necessary condition, and
the criteria of Eq. (2.14) gives a suScient one. While the Lyapunov function criterion gives a
local condition for stability, the other two involve temporal averages over chaotic trajectories of the
driving signal, and therefore they establish conditions for global stability. As a consequence, none
of these latter criteria prevents from local desynchronization events that could occur within the CS
manifold.
This point is discussed in Ref. [53], where the synchronized behavior of two chaotic circuits

coupled in a drive–response con5guration is studied. It is shown there that long CS intervals are
interrupted by brief and persistent desynchronization events. To demonstrate that the Lyapunov expo-
nents do not prevent from local desynchronization events, the average distance from the CS manifold
|X⊥|rms and its maximal observed value |X⊥|max are measured. |X⊥|rms is sensitive to global stabil-
ity, while |X⊥|max is sensitive to local stability of the CS state. Fig. 2.3 reports these quantities as
well as the largest conditional exponent !1⊥ against the coupling strength c. In order to predict this
intermittent loss of synchronization, the authors of Ref. [53] propose two diJerent parameters whose
negativity would determine the local stability of the synchronization manifold. One of them is the
maximal transverse Lyapunov exponent of the most unstable invariant set '⊥, whose dependence on
c is also shown in Fig. 2.3. Although this criterion rigorously and clearly predicts the synchronized
state, its application may be diScult in practice, due to the in5nite number of invariant sets where
stability should be determined.
The appearance of these local desynchronized states, despite Lyapunov exponents are negative, is

also related with a small parameter mismatch between the coupled systems and low levels of noise,
which are unavoidable eJects in experimental devices and in numerical integration. Now, we will
address this problem describing the type of bifurcation appearing at the transition point between the
nonsynchronized state and the synchronized one. We refer to this problem as the desynchronization
problem.
As we have outlined in previous paragraphs, the phenomenon of chaotic synchronization is some-

times described in terms of invariant sets or invariant manifolds, in particular when we deal with
the stability of the synchronization state. In order to explain the meaning of the invariant sets in this
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Fig. 2.3. (a) Degree of synchronization experimentally observed in coupled chaotic circuit. (b) Theoretically predicted
stability of the synchronized state (see the text for a de5nition of diJerent variables) [53].

context, let us refer to the coupling con5guration given by Eq. (2.6). In this case, if the oscillators
are synchronized at some instant of time, the coupling term is zero because both oscillators are
identical and the coupling is given by the diJerence between the states of two oscillators. Then,
the future evolution from any initial synchronized state is restricted to a set embedded in the entire
phase space: the synchronized state set. This set is an invariant manifold M for any value of the
coupling. Furthermore, in any synchronized state, the dynamics of the coupled systems are the same
as that of a single free-running chaotic oscillator. Therefore, there is a chaotic attractor embedded
in the synchronization manifold, where the systems would evolve if the dynamic could be restricted
to this manifold.
This kind of problem, i.e. the existence of a chaotic attractor (A) embedded in an invariant

manifold (M) of the entire phase space, has attracted considerable attention in the past years beyond
the desynchronization problem, especially about the conditions under which the attractor A is also
an attractor of the entire phase space.
Ashwin et al. describe a possible mechanism for the loss of stability of the attractor A, which is

called the bubbling bifurcation and it is entirely applicable to the desynchronization problem [61].
Let us describe the bubbling bifurcation in a general context. We consider the following situation.
The transverse dynamics of the synchronization manifold is ruled by a parameter ), but this parameter
does not aJect the dynamics on the invariant manifold, i.e. ) is the coupling parameter. There exists
a critical value )c, such that for )¿)c all invariant sets in the attractor A are stable with respect to
perturbations transverse to the invariant manifold. As ) is decreased below )c an invariant set in A 5rst
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becomes unstable to perturbations transverse to the invariant manifold. For )¿)c all the trajectories
close to A asymptotically approaches A, i.e. the chaotic oscillators will eventually synchronize. When
)¡)c, most initial conditions close to A remain close to A, but as a consequence of the existence of
an unstable invariant set embedded in A, some initial conditions move far away from the invariant
manifold containing A, evolving in a repelled orbit. This kind of transition at )= )c is the bubbling
transition or the bubbling bifurcation [61,62].
At this point, we should consider two possible situations. If the dynamic system is such that

the repelled orbits are attracted to a set oJ the invariant manifold, then it is said that the basin of
attraction of A is riddled and it is referred as riddling transition [63–65]. After a riddling transition,
the basin of attractor A appears as 5lled of “holes” which belongs to the basin of the other attractor.
On the other hand, if the dynamical system is such that all possible trajectories are bounded and A is
the only attractor of the entire phase space, then a trajectory repelled from A eventually returns to the
vicinity of A after a transient, in which the orbit makes several excursions away from the invariant
manifold. This transient phase appears as bursts that suddenly interrupts the typical behavior of any
state variable at the synchronization state.
As the coupling parameter is further reduced away of )c, new sets in A lose their transverse

stability. By means of this process, the invariant manifold M itself becomes transversely unstable
at )b, leading to a new bifurcation, which is called the blowout bifurcation [66]. For )¡)b all orbits
are repelled from A.
In the case of coupled chaotic oscillators which are identical, the system exits from the synchro-

nization state because A becomes unstable in the normal direction to M. But, the bubbling and the
riddling transitions can be triggered by very low levels of noise or by a small parameter mismatch
between the coupled systems, then both can be observed as intermediate stages. Let us recall that
this process can occur no matter how small is the mismatch or how low is the noise. As the coupling
decreases from a fully synchronized state, the bubbling bifurcation happens when a periodic orbit
embedded in the chaotic attractor A loses its stability in a direction transverse to M. This kind of
periodic orbits, which loses stability in a transverse direction, are called saddle periodic orbits. A
saddle periodic orbit usually becomes unstable via a pitchfork (period-doubling) bifurcation which
creates new unstable orbits outside of M. As the coupling parameter is further reduced, new orbits
in A lose their transverse stability leading to the creation of new unstable orbits outside M. By
means of this process the invariant manifold M itself becomes transversely unstable, leading to the
blowout bifurcation.
This scenario for the desynchronization process has been described and analyzed in the case of

coupled identical chaotic electronic circuits [61], and for coupled chaotic maps [33,67,68].
The dynamic of two coupled identical logistic maps is analyzed in the Ref. [67]. In this case, it

is shown that the loss of synchronization via a sequence of bifurcations of saddle periodic orbits
induces bubbling and riddling transition in the system. The bubbling bifurcation is determined by the
bifurcation of a saddle periodic orbit embbeded in the attractor A, while the phenomenon of riddled
basins occurs through a bifurcation of a periodic orbit outside M.
In Ref. [68], the eJects of noise and asymmetry on the bubbling transition are studied. It is shown

that, in the presence of noise or asymmetry, the attractor A is replaced either by a chaotic transient
or by an intermittently bursting time evolution. Scaling relations are derived for the average chaotic
transient lifetime and for the average interburst time interval as a function of the strength of the
asymmetry and the amplitude of the noise.
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DiJerent kinds of bubbling transition have been identi5ed in Ref. [69]. In this work, it is shown
that, as a parameter is varied through a critical value, the transition to bubbling can be “hard”
(the bursts appear abruptly with large amplitude) or “soft” (the maximum burst amplitude increases
continuously from zero). This parameter is associated with the asymmetry of the coupling between
the systems.
When the coupled chaotic oscillators are nonidentical, the chaotic synchronization could occur

in a more complicated synchronization manifold x = *(y) (see Section 3.6). The study of the
desynchronization problem in this case has great relevance. In spite of the fact that a similar process
of desynchronization can occur, the complicated topology of M can render a very problematic task
to cope with the identi5cation of bubbling-type or blowout-type bifurcations. This situation has been
addressed in Ref. [33]. This work analyzed the desynchronization problem in the case of a driver–
response con5guration of coupled maps, where a continuous diJerentiation between the driver and the
response takes place decreasing the coupling parameter. It proposed a method that allows to describe
the desynchronization problem by using a subsystem decomposition based on the identi5cation of
unstable periodic orbits of the driver. By means of this formalism, the creation and evolution of the
complicated set of orbits that develops outside of the synchronization manifold is described. This set
is called the emergent set. A critical transition point of this process is also identi5ed. In addition,
it is shown that the desynchronization process takes place 5rst by means of the migration of the
set of unstable periodic orbits embedded in the attractor A. This migration appears to occur before
any orbit loses its transverse stability. As the coupling parameter is decreased the orbits’ stability
properties evolve in its migration, until a bubbling-type bifurcation occurs.
Before describing the chaotic synchronization of nonidentical systems, we mention an interesting

subject appeared recently, the so called “anticipating synchronization” [70]. It shows that some
kinds of coupled chaotic systems might synchronize so as their response “anticipates” the drivers,
by synchronizing with their future states. In Ref. [70] diJerent unidirectional coupling schemes of
identical systems are considered, such as a nonlinear time-delayed feedback either in the driver or in
both coupled systems. The results elucidate that the anticipating synchronization manifold (where
the response anticipates the driver) can be globally stable due to the interplay between delayed
feedback and dissipation, for any relatively small value of the lag time between response and driver.
Furthermore, two coupled REossler systems are considered where the nonlinear time-delayed term is
introduced in the dissipative coupling. In this latter case, the anticipating synchronization manifold is
stable only for small delays. In addition, it has been shown that it is possible to achieve anticipation
times larger than characteristic time scales of the system’s dynamics, thus introducing a novel way
of reducing the unpredictability of chaotic dynamics [71].

3. Synchronization in nonidentical low-dimensional systems

In the last section, it has been shown that when identical chaotic systems are coupled properly
with strong-enough coupling strength, they can achieve complete synchronization by following the
same chaotic trajectory. Synchronization in this case is associated with the transition of the largest
transverse Lyapunov exponents of the synchronization manifold from positive to negative values.
However, experimental and even more real systems are often not fully identical, especially there

are mismatches in parameters of the systems. It is thus important and also interesting to investigate
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synchronization behavior between nonidentical systems. In general, completely identical synchro-
nization may not be expected in nonidentical systems because there does not exist such an invariant
manifold x = y. In this section, we describe diJerent types of synchronization behavior in cou-
pled nonidentical low-dimensional chaotic systems. For chaotic oscillators, starting from uncoupled
non-synchronized oscillatory systems, with the increase of coupling strength, 5rstly a rather weak
degree of synchronization, the phase synchronization (PS) [7], may occur where the suitably de5ned
phases of the chaotic oscillators become locked, while the amplitudes remain highly uncorrelated. If
the chaotic oscillations cover a broad range of time scales (periods of unstable orbits), the phases
will not fully synchronize, but synchronization epochs are interrupted by intermittent phase slips.
This phenomenon is called imperfect phase synchronization [13]. Further increase of the coupling
strength moves the system into a regime of a stronger degree of synchronization, where also the
amplitudes become strongly correlated. There the states of the two chaotic oscillators become eJec-
tively identical with a proper shifting of time, known as lag synchronization (LS) [9]. At stronger
coupling strengths, the time lag almost approaches zero, and two nonidentical systems become almost
completely synchronized.
When diJerent chaotic systems ẋ= f1(x) and ẏ= f2(y) are coupled with a strong enough coupling

strength, the dynamics is constrained to a subspace in the whole phase space of the system (x; y).
Due to the nonidentity, this subspace is not x = y, but a more complicated functional relationship,
e.g. y = h(x) may be established between both subsystems. Known as generalized synchronization
(GS) [10,41], this hidden synchronization behavior can be regarded as a generalization of complete
synchronization where the function takes the special form of identity function.
In phase synchronization of coupled chaotic oscillators, only phases of the subsystems are locked,

while the dynamics is hyper-chaotic; in generalized synchronization, the dynamics of the coupled
systems is restricted to a manifold which is often very complicated. In both cases, synchronization
is hidden and special tools are required for detecting it, especially in experimental and natural
systems where most likely the only accessible information is a recorded nonlinear time series of the
subsystems.

3.1. Phase synchronization of chaotic systems

3.1.1. Synchronization of periodic oscillators
We start with the classical notion of synchronization of two coupled periodic oscillators, usually

de5ned as locking of the phases *1;2 with a ratio n :m (n and m are integers), i.e. |n*1−m*2|¡const.
As a result of phase synchronization, the frequencies !i = *̇i are also locked, i.e. n!1 − m!2 = 0,
while the amplitudes can be quite diJerent, so that nonidentical periodic oscillators can be phase
synchronized with each other by a rather weak coupling. Hence, PS of weakly coupled periodic
oscillators can be described by the dynamics of the phase diJerence -= n*1 − m*2, i.e.

-̇=W!− C sin - ; (3.1)

where W!= n!0
1−m!0

2 is the diJerence between the natural frequencies !0
1;2 of the oscillators, and

C is the coupling strength. Synchronization is achieved when the parameters satisfy∣∣∣∣W!
C

∣∣∣∣6 1 ; (3.2)
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Fig. 3.1. (a) Systematic plot of the washboard potential V (-)=−-W!−C cos - for the system equation (3.1). (b) Noise
makes the phase diJerence - 8uctuate and induces phase slips.

which forms the synchronization region known as the Arnold tongue [72]. In the synchronization
region, the system is stable at the 5xed point -0 = arcsin(W!=C) which corresponds to a minimum
of the washboard potential V (-) = −-W! − C cos -. In general, perfect phase synchronization and
frequency locking are destroyed when the oscillators are in the presence of noise 0(t) which is
unavoidable in experimental or real systems. The dynamics of the phase diJerence is now described
by

-̇=W!− C sin -+ 0(t) : (3.3)

A detailed analytical description of this system is possible using the Fokker–Planck equation [73]
if we assume the noise 0(t) to be Gaussian delta-correlated [74]. In general, noise makes the phase
diJerence 8uctuate around the minimum of the washboard potential V (-), and climb over the energy
barrier occasionally to move into the neighboring minima, as illustrated in Fig. 3.1(a). As a result, we
can observe noise-induced 21 phase slips (Fig. 3.1(b)). PS in the presence of noise will be discussed
in more detail in Sections 4 and 7 in the context of noise-induced PS and PS in experimental and
natural systems.
Here we take the periodically driven REossler oscillator [75] as an illustrative example:

ẋ =−!y − z + E sin(3et) ;

ẏ = !x + ay ;

ż = f + z(x − c) (3.4)

with parameters ! = 0:97; f = 0:2 and c = 10. When setting a = 0:04, the free REossler oscillator
exhibits a periodic motion with a frequency 3 = 0:981. Fig. 3.2(a) shows that this periodic motion
is locked with the ratio n :m=1 : 1 to the weak external periodic signal with amplitude E=0:4 and
3e = 1:0. The whole Arnold tongue for 1 : 1 synchronization is shown in Fig. 3.2(b).

3.1.2. Phase of chaotic signals
This classical notion of synchronization has recently been extended to chaotic oscillators [7].

Fig. 3.3(a) shows a time series x(t) of autonomous chaotic oscillations in the REossler oscillator
of Eq. (3.4) for a = 0:165. To study phase synchronization of chaotic systems, the 5rst important
problem is to determine the time-dependent amplitude A(t) and phase *(t) of a chaotic signal. A
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Fig. 3.3. (a) Chaotic signal x(t) of the chaotic REossler oscillator. (b) Phase of the chaotic signal. Solid line: phase of
Eq. (3.5); dashed line: phase of Eq. (3.7); and dotted line: phase of Eq. (3.8).

few approaches have been proposed [7] to calculate phases of chaotic oscillators. Most generally,
one can apply the analytic signal approach introduced by Gabor [76]. The analytic signal  (t) is a
complex function de5ned as

 (t) = s(t) + js̃(t) = A(t)ej*(t) ; (3.5)

where the function s̃(t) is the Hilbert transform of the observed scalar time series s(t)

s̃(t) =
1
1
P:V:

∫ ∞

−∞
s(�)
t − �

d� ; (3.6)

where P.V. stands for the Cauchy principal value for the integral.
If the 8ow of the chaotic oscillators has a proper rotation around a certain reference point, the

phase can be de5ned in a more intuitive and straightforward way. For example, in the REossler chaotic
oscillators at a=0:165, the projection of the chaotic attractor into the x–y plane looks like a smeared
limit cycle (see Fig. 3.4(a)), and the phase can be simply de5ned by the angle

*(t) = arctan (y(t)=x(t)) : (3.7)
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Fig. 3.4. Projection of the chaotic REossler attractor on the x–y plane. (a) Phase coherent attractor. Phases of this attractor
can be calculated with the analytic signal method, the Poincare’ section (e.g. the heavy dashed line in the 5gure) or
simply the rotation angle. Phase dynamics in this system is very coherent: the return time �k − �k−1 has only a rather
narrow distribution. (b) Funnel chaotic REossler attractor. Now it is diScult to de5ne a phase variable for the system.

Phases of a chaotic 8ow can also be de5ned based on an appropriate Poincare’ section with which
the chaotic orbit crosses once for each rotation (Fig. 3.4(a)). Successive crossing with the Poincare’
section can be associated with a phase increase of 21 and the phases in between can be computed
with a linear interpolation, i.e.

*(t) = 21k + 21
t − �k

�k+1 − �k
(�k ¡ t¡�k+1); (3.8)

where �k is the time of the kth crossing of the 8ow with the Poincare’ section. As seen in Fig. 3.4(a),
the successive maxima or minima of the chaotic time series correspond to a particular Poincare’
section. This means that phase can be de5ned equivalently by examining the maxima or minima of
the scalar chaotic time series without reconstruction of the dynamics in a higher dimensional phase
space and 5nding a Poincare’ section.
Fig. 3.3(b) shows phases calculated in these diJerent ways for the chaotic signal in Fig. 3.3(a),

and they are in very good agreement. But we have to emphasize that, there is so far no unique
de5nition of a phase in chaotic oscillators. In spite of diJerent de5nitions, phase is a monotonously
increasing function of time. However, both Eqs. (3.5) and (3.7) reveal that phases are not increasing
uniformly due to pronounced 8uctuations in the amplitude of the signal (see inset in the Fig. 3.3(b)
for t∼55). These 8uctuations around the average linear increase can be characterized by the phase
diJusion D* de5ned as

〈(*(t)− 〈*(t)〉)2〉= 2D*t ; (3.9)

where 〈·〉 denotes ensemble average. D* measures the degree of phase coherence of the chaotic
signal. As seen in Fig. 3.3(b), the 8uctuation of the phase around the linear increase is almost
invisible, and correspondingly a very small D* indicates that phase is very coherent in this
case.
It is important to point out that the phase of a chaotic 8ow is closely related to the zero Lya-

punov exponent in the autonomous chaotic systems [7]. The zero Lyapunov exponent corresponds
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to the translation dx(t) along the chaotic trajectory. In a system where the chaotic 8ow has a
proper rotation around a certain reference point, dx(t) can be uniquely mapped to a shift of the
phases d*(t) of the oscillator. Due to this connection, phase synchronization of chaotic oscillators
can be manifested by a transition in the zero Lyapunov exponent, as will be shown later in this
section.
However, a suitable phase variable may not be de5ned for a chaotic oscillator which is far from

being phase coherent. An example is shown by the funnel chaotic attractor of the REossler oscillator
at a = 0:25 in Fig. 3.4(b). It is seen that the chaotic trajectory does not cycle the unstable 5xed
point in all rotations. If we de5ne the phase with Eq. (3.7), it does not increase monotonously with
time, and a proper Poincare’ section crossing once with the chaotic trajectory in each rotation is
not available now. Readers can 5nd more detailed discussion on the de5nition of phase of chaotic
oscillations in Refs. [74,77].
It is very helpful to put the de5nition of phase of chaotic oscillation on a more rigorous mathe-

matical base, as performed in [72,77,78]. As shown above, for a chaotic oscillatory system ẋ=F(x)
it is frequently possible to de5ne a phase *(t) which increases almost linearly with a natural period
T such that

|*(T + t)− *(t)|mod 21¡'�1 ; (3.10)

which is equivalent to a small phase diJusion D*. Ref. [78] has proved that if in addition *(t)
is strictly increasing with time, then there exists a change of coordinates of radial distance R and
phase 9, (R; 9), in the neighborhood of the chaotic attractor of the system, such that

Ṙ = F(R; 9) ;

9̇= 1 + :(R; 9) ; (3.11)

where 9 is T -periodic. With this coordinate transformation, the phase dynamics is similar to that of
a periodic orbit, except that there is a term :(R; 9) showing a sensitivity to the R variables, which is
required to be small, e.g.

∫ T
0 :(R; *) d*=O(') with '�1. Ref. [78] has developed an analytical tool

for a quantitative description of the phase-locked states with such coordinates, and provides suScient
conditions for phase-locking to occur. This technique has been applied in [78] to a phase-coherent
chaotic electric circuit model which can be viewed as a piece-wise linear simpli5cation of the
chaotic REossler oscillator. The point we want to emphasize here is that, in the phase coherent
chaotic oscillators, the phases de5ned in diJerent ways are equivalent up to discrepancies of size
at most ', according to rigorous mathematical consideration in Ref. [78], and they will lead to
practically the same results in studying phase synchronization.

3.1.3. Phase synchronization of chaotic oscillators by external driving
Now we turn to demonstrate phase synchronization of chaotic oscillators by periodic driving.

Here we illustrate the synchronization behavior with the system equation (3.4) in a chaotic regime
with a = 0:165. As shown in Fig. 3.5, when the system is phase locked to the driving signal, the
stroboscope of the system state (x; y) at each period of the driving signal is restricted to an arc area
of the chaotic attractor, while it is distributed relatively uniformly over the whole attractor when the
system is out of the phase-locking region. The whole synchronization region shown in Fig. 3.6 is
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Fig. 3.5. Stroboscopic plot of the REossler system state (x; y) (5lled cycles) at each period of the driving signal
(Eq. (3.4)). The dotted background is the unforced chaotic attractor. (a) E = 0:15; 3e = 1:0, phase is synchronized.
(b) E = 0:15; 3e = 1:02, phase is not synchronized.
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Fig. 3.6. Synchronization region of the chaotic REossler oscillator by an external periodic force (Eq. (3.4)).

very similar to the Arnold tongue of the periodic oscillators in Fig. 3.2(b). These properties were
5rstly reported in Ref. [79] and studied more intensively in Ref. [74].
Intuitively, we can expect this similarity because we have noticed that the phases of phase-coherent

chaotic oscillations increase almost linearly as in periodic oscillations. To obtain a deeper in-
sight into this similarity and to reveal new features, we study phase synchronization of chaotic
oscillators in terms of unstable periodic orbits [80,81]. A stroboscopic recording of the ampli-
tude (denoted by x now) and phase * of the chaotic signal at each period of the external force
gives [80]

x(n+ 1) = f(x(n); *(n));

*(n+ 1) = *(n) + 3 + ) cos[21*(n)] + g(x(n)) (3.12)

which is essentially the circle map coupled to a chaotic map f. In this presentation, 3 denotes
the diJerence between the natural frequency of the chaotic oscillator and the frequency of the
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Fig. 3.7. From Ref. [80]. Phase-locking regions for periodic orbits with periods 1–5 in the system equation (3.12). The
region of full phase synchronization, where all the phase-locking regions overlap, is delineated with black.

driving force. ) represents the coupling strength which is proportional to the amplitude of the driv-
ing force, and g(x(n)) corresponds to the nonuniformity of the phase rotations in the chaotic os-
cillators as a result of chaotic 8uctuations of the amplitude x. The average growth rate of the
phase, i.e. W3 = limn→∞ [*(n) − *(0)]=n, corresponds to the phase rotation number, and W3 = 0
indicates synchronization of the chaotic oscillator to the external force. Without loss of general-
ity, the chaotic tent map f(x; *) = 1 − 1:9|x| + 0:05) sin [21*(n)] and g(x) = 0:05x are studied in
Ref. [80].
The analysis of Eq. (3.12) is based on the presentation of a chaotic attractor through its unstable

periodic orbits embedded in it [3]. A periodic orbit of period N has its real period T ≈ T0N ,
where T0 is the average return time of the period one periodic orbit. For diJerent periodic orbits,
T0 shows 8uctuations around the average return time of the chaotic oscillations, as is modeled in
the map system by the term g(x). Due to these 8uctuations, each periodic orbit has its individual
phase-locking region under the periodic external forcing, as seen in Fig. 3.7. In this illustrative
mapping model, the region of full phase synchronization is given by the overlapping region of the
Arnold tongues of all the unstable periodic orbits. Calculating the phase locking regions of the
unstable periodic orbits embedded in the continuous-time REossler attractor, it has been found that
the results quantitatively agree with the above consideration [81]. Additionally under the in8uence of
the force, some unstable periodic orbits of the autonomous oscillator leave the bulk of the attractor
and may be visited extremely rarely.
Investigation of phase synchronization of chaos in terms of unstable periodic orbits is very useful

to understand special features not observed in synchronization of periodic oscillations. More details
will be discussed in later sections in the context of phase synchronization transition and imperfect
phase synchronization.
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Fig. 3.8. Illustration of phase synchronization of two coupled nonidentical REossler chaotic oscillators (3.13). (a) Time
series of phase diJerence for diJerent coupling strengths C. When C¿0:036, phases are nearly perfectly synchronized.
(b) Amplitude A1 vs. A2 for the phase synchronized case at C = 0:04. Although the phases are locked, the amplitudes
remain chaotic and nearly uncorrelated.

3.1.4. Phase synchronization of coupled chaotic oscillators
Next it is demonstrated that also two nonidentical chaotic oscillators are able to synchronize their

phases due to coupling. This is shown for two coupled chaotic REossler oscillators [7]

ẋ1;2 =−!1;2y1;2 − z1;2 + C(x2;1 − x1;2) ;

ẏ 1;2 = !1;2x1;2 + ay1;2 ;

ż1;2 = f + z1;2(x1;2 − c) ; (3.13)

with a small parameter mismatch !1;2 = 0:97 ±W!. The other parameters, a = 0:165, f = 0:2 and
c = 10, are the same for the two oscillators. Both oscillators have very coherent phase dynamics
due to the proper rotation with a small variation in the return time, but they have diJerent average
frequencies as a result of the mismatch W!.
As is illustrated in Fig. 3.8(a), for a 5xed W! = 0:02, there is a transition from the nonsyn-

chronous regime, where the phase diJerence increases almost linearly with time, *1 − *2∼W3t, to
a synchronous state, where the phase diJerence does not grow with time, i.e. |*1 − *2|¡const and
the diJerence W3= 31 − 32 between both mean frequencies 3i = 〈*̇i〉 vanishes, i.e. W3= 0. It is
important to emphasize that although the phases of the two oscillators are locked, the amplitudes
are nearly uncorrelated, as seen in Fig. 3.8(b), which corresponds to a very small value of the nor-
malized cross correlation C(A1; A2) ≈ 0:008. Thus PS stands for a weaker degree of synchronization
in chaotic systems in contrast to CS discussed in Section 2. It occurs already for extremely weak
couplings, as can be seen by the synchronization region in the parameter space C vs. W! in Fig. 3.9,
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Fig. 3.9. Synchronization region (dotted points) of two coupled REossler chaotic oscillators in the parameter space of C
vs. W!.

which is very similar to the “Arnold tongue” structure of coupled periodic oscillators. PS is also
visible in the occurrence of peaks in the power spectra [82]; however this is only a necessary but
not suScient condition for PS.
PS of chaotic REossler oscillators can be better understood by converting the original system into

the dynamics of amplitude and phase. By introducing

*= arctan (y=x); A= (x2 + y2)1=2 ; (3.14)

we get

Ȧ1;2 = aA1;2 sin2*1;2 − z1;2 cos*1;2 + C(A2;1 cos*2;1 cos*1;2 − A1;2 cos2*1;2) ;

*̇1;2 =!1;2 + a sin*1;2 cos*1;2 + z1;2=A1;2 sin*1;2

−C(A2;1=A1;2 cos*2;1 sin*1;2 − cos*1;2 sin*1;2) ;

ż1;2 =f − cz1;2 + A1;2z1;2 cos*1;2 : (3.15)

As carried out in Ref. [9], the main idea in studying the phase dynamics is to use averaging over
rotations of the phases *1;2, assuming that the amplitudes vary slowly. Introducing the “slow” phases
-1;2 according to *1;2 = !0t + -1;2, and averaging the equations for them, one gets

d
dt
(-1 − -2) = 2W!− C

2

(
A2

A1
+

A1

A2

)
sin(-1 − -2) : (3.16)

When we neglect the 8uctuations of the amplitudes, Eq. (3.16) has a 5xed point

-1 − -2 = arcsin
4W!A1A2

C(A2
1 + A2

2)
(3.17)

when the coupling strength C is larger than the critical value CPS = 4W!A1A2=(A2
1 + A2

2). CPS is
then the onset of PS. This makes clear that PS of coupled chaotic oscillators is very similar to
the classical case of phase synchronization of coupled periodic oscillators in Eq. (3.1), except that
the phase diJerence now is not a constant value, but 8uctuates due to chaotic 8uctuations of the
amplitudes.
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Phase synchronization in chaotic oscillators is signi5cant because it reveals a weaker degree of
collective behavior and a new type of interdependence among coupled oscillators displaying compli-
cated dynamics: the oscillators only adjust their time scales by weak coupling, while the amplitudes
can be only weakly correlated. The synchronized time scales and the chaotic states provide both
coherence (order) and feasibility (complexity) in the system. This twofold feature has already found
several applications in experimental as well as in natural systems. Details will be discussed in
Section 7.

3.1.5. Phase synchronization of two coupled circle maps
So far we have presented continuous in time systems, to demonstrate chaotic PS. In this section

conditions for an onset of chaotic PS in a system of two coupled discrete in time models, namely,
nonidentical circle maps (CMs) [83], are studied. Chains of coupled CMs will be considered in
Section 6.2. The simplest CM yielding chaotic behaviour is

*k+1 = b+ *k − F(*k) : (3.18)

This map relates the phase variable *k at adjacent times k=1; 2; : : : ; b∈ [0; 21] is a positive parameter
which can be interpreted as frequency; F(*) is a piece-wise linear 21-periodic function of the form
F(*) = c*=1 de5ned in the interval [ − 1; 1], and c is the control parameter. System (3.18) is
one of the basic models in nonlinear dynamics, and it has been studied in many mathematical
(cf. [84]), physical (cf. [85]) and technical (in particular, in the theory of digital phase-locked
loops (DPLL) [86–88]) issues. This map with nonuniformity of the phase rotation is considered in
Section 3.1.3.
The dynamics of an individual CM can be determined by the rotation number �, which is de5ned

as the average growth rate of the phase:

�=
1
21

lim
M→∞

*M − *1

M
; (3.19)

where M is the number of iterations.
For uncoupled CM there are three diJerent types of behavior [88]:

(i) for c¿0 for every value of b, the map (3.18) has only one attractive set 3. For a rational
rotation number �=p=q this 3 coincides only with attracting periodic trajectories of period q;
for an irrational rotation number the set 3 is a Cantor attractive set on which the map (3.18)
acts like a rotation;

(ii) if c = 0, then (3.18) becomes a continuous map of a circle rotated through the angle b;
(iii) for c¡0 the map (3.18) demonstrates a chaotic dynamics. Only the case of chaotic behavior,

i.e. c¡0 is studied below.

We now consider a pair of symmetrically coupled maps (3.18), i.e. we get the two-dimensional
system:

*k+1
1 = b1 + *k

1 − F(*k
1) + d sin(*k

2 − *k
1) ;

*k+1
2 = b2 + *k

2 − F(*k
2) + d sin(*k

1 − *k
2) : (3.20)
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System (3.20) can be regarded as a model of coupled partial DPLL connected in parallel by
phase-mismatching signals. Some similar one- and two-dimensional in space models of coupled
identical CMs have been studied in [89]. This type of nonlinear coupling between partial elements
in the form of sinus of phase diJerences naturally arises in models of ensembles of weakly coupled
time continuous oscillators. Respectively, pattern formation and synchronization in networks of phase
oscillators with such kind of coupling between nearest neighbors have been investigated in [90].
As in the case of continuous in time systems, one can use two criteria to test for m1 :m2 syn-

chronization, where m1;2 are integers. m1 :m2 PS of chaotic rotations between two CMs is de5ned
as phase entrainment or locking

|m1*k
1 − m2*k

2|¡Const (3.21)

for all k = 1; 2; : : : . Synchronization of rotations is analogous de5ned as the coincidence of their
rotation numbers:

m1�1 = m2�2: (3.22)

For diJerent values of the frequency mismatch Wb = b2 − b1, the existence of synchronization
regions has been found (Fig. 3.10) [83]. The geometrical structure and the size of such regions
strongly depend on the rotation number diJerence W� = �2 − �1 and the coherence properties of
rotations. These properties are de5ned by the parameter c of the function F(*). For c = 0, the
rotations are completely coherent, i.e. it is a rotation with constant angle frequency. If |c| grows,
the noncoherence of the rotation increases. At relatively small |c| values, the diJerence of the
rotation numbers W� plays the crucial role in the synchronization. At larger W� values, a larger
value of coupling is needed to achieve synchronization. The sizes of the synchronization regions
become smaller with increasing |c|. This happens due to an increase of noncoherent properties of
the rotation. At large |c| values, the noncoherence of rotations is very large. Due to that, even at a
very small frequency mismatch and as a consequence of that at very small rotation number diJerence,
synchronization cannot be achieved. The existence of time intervals with a strongly diJerent phase
growth rate makes locking of rotations impossible.
In contrast to PS of chaotic oscillators, synchronization of chaotic rotators is not necessarily ac-

companied by bifurcations of the chaotic set and can occur via a crisis transition to a band-structured
attractor. For system (3.20) the Lyapunov exponents are given by

!1 = ln
∣∣∣ 1− c

1

∣∣∣ ;

!2 = lim
M→∞

1
M

M∑
k=1

ln
∣∣∣1− c

1
− 2d cos(*k

2 − *k
1)
∣∣∣ : (3.23)

Since the 5rst Lyapunov exponent !1 is constant and positive for all values of d, we expect that
only the sign of the second Lyapunov exponent !2 is important for the occurrence of chaotic PS.
If both Lyapunov exponents are positive, there is a hyper-chaotic regime that determines usually
a nonsynchronized regime. If, with increase of coupling, the second Lyapunov exponent becomes
negative, there is a strong indication for the occurrence of PS. This situation takes place at the tran-
sitions to 1 : 1 synchronization in all simulations presented in Figs. 3.11 and 3.12. Such a bifurcation
is observed in chaotic PS of continuous in time systems (e.g. see [7]).
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Fig. 3.10. Regions of chaotic phase synchronization for b1 = 0:6 and diJerent values of b2 : 0:8 (a), 1.0 (b), 1.2 (c),
1.4 (d), 1.6 (e), 1.8 (f), 2.0 (g), 2.2 (h), 2.4 (i), 2.6 (j). The main gray regions correspond to 1 : 1 synchronization. In
columns (c–j) for relatively small −c small regions of 2 : 1 (c–g), 3 : 1 (f–h) and 4 : 1 (i, j) synchronization are presented.
They are visible as small stripes in the left bottom areas.

But this is not the only scenario for the transition from nonsynchronous to synchronous behavior
for which criteria (3.21) and (3.22) are satis5ed. This is illustrated with plots of dependencies of
the winding number w= �2=�1 and the second Lyapunov exponent !2 on the coupling coeScient d
(Fig. 3.11) and phase diagrams for nonsynchronous (Fig. 3.12(a,b)), and synchronous (Fig. 3.12(c)),
regimes. In the interval d∈ [0:285; 0:32] the winding number is equal w= 3=1 that corresponds to a
3 : 1 synchronization, but the second Lyapunov exponent remains positive !2 ≈ 0:05, i.e. synchronized
hyper-chaos exists. Also there are intervals of d in which 2 : 1 and 1 : 1 hyper-chaos synchronizations
are observed. The transition to (or from) synchronized hyper-chaos are accomplished with a drastic
change in the structure of the chaotic set (Fig. 3.12). In the case of nonsynchronous hyper-chaos
(Fig. 3.12(a)(b)), the chaotic trajectory covers practically the whole phase space; i.e. the square
[ − 1 :1;−1 :1] with diJerent densities. When the value of coupling is close to the critical value
corresponding to the transition to the synchronized hyper-chaos, we observe a localization of areas
visited by the chaotic trajectory. The appearance of more dense bands of motions can be clearly
seen (Fig. 3.12(b)(c)). From the synchronization point of view the attendances of gaps between
these bands are corresponding to slips in the phase diJerence - k = *2 − 3*1, i.e. jumps of 21 [80]
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Fig. 3.11. The winding number w=�2=�1 and the second Lyapunov exponent !2 vs. the coupling coeScient d for b1=0:6,
b2=2:0 and c=−0:15. Regions of 3 : 1, 2 : 1 and 1 : 1 synchronization are existing. Enlargements of the interval [0:25; 0:35]
are presented in the insets (left: !2, right: w).

Fig. 3.12. Phase portraits of system (3.20) for b1 = 0:6, b2 = 2:0, c = −0:15 and diJerent d within (c) (d = 0:3) and
outside (a) (d = 0:25) and (b) (d = 0:275) of the 3 : 1 synchronization region. In all three cases a hyper-chaotic regime
(!1; !2¿0) exists.

(see Fig. 3.13). A decrease of the number of slips exhibits the tendency of the system to perfect PS
where no slips exist. At synchronized hyper-chaos, the chaotic trajectory is placed only in relatively
narrow bands in the phase space (Fig. 3.12(c)). This transition to synchronous motions corresponds
to the transition of the phase diJerence - k=*k

2−3*k
1 from rotation to oscillation. Thus the transition

from nonsynchronous to synchronous behavior in a two-element CMs system occurs through interior
crisis [3] of the hyper-chaotic set, i.e. in both regimes both Lyapunov exponents are positive.
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Fig. 3.13. Evolution of phase diJerence - k = *k
2 − 3*k

1 for synchronous (d = 0:30) and nonsynchronous
(d= 0:28; 0:282; 0:322; 0:326) cases of system (3.20). Parameters: b1 = 0:6, b2 = 2:0 and c =−0:15.

3.2. Transition to phase synchronization of chaos

In this section, we discuss in more detail the transition to phase synchronization, or in other words,
how desynchronization occurs when a parameter moves out the phase-locking region.
As it has been seen in Fig. 3.8, when the coupling strength is well outside the synchronization

region, the phase diJerence increases almost linearly. When it approaches the border of phase syn-
chronization, many phase-synchronized epochs characterized by plateaus of the phase diJerence are
observed. The average duration of the synchronization epochs becomes longer and longer, and phase
synchronization is only interrupted intermittently by 21 phase slips when the coupling strength is
getting more and more closer to the border till the system achieves perfect phase-locking inside the
synchronization region.
In the classical case of coupled periodic oscillators where the phase dynamics can be described

by Eq. (3.1), the transition to phase synchronization corresponds to a saddle-node bifurcation, and
the intermittency of the phase dynamics just outside the synchronization region is characterized by
a type-I intermittency [91]. The average duration �1 between phase slips scales as

�1∼ |C − CPS|−1=2 (3.24)

with CPS being the transition point of phase synchronization. Here the parameter C can be either
the coupling strength or the frequency of the driving signal.
As has been discussed in Section 3.1.3, the synchronization region of the chaotic oscillators

corresponds to overlapping of phase-locking regions of the unstable periodic orbits embedded in the
chaotic attractor. In the PS region, and for a particular unstable periodic orbit, Eq. (3.1) has a stable
5xed point *s and an unstable 5xed point *u, and accordingly, each of the unstable periodic orbit
is associated with an attractor and a repeller in the direction of *. In the generalized phase space
(x; *), the attractor (x; *s) and the repeller (x; *u) are well separated, as shown in Fig. 3.14(a) for
the mapping system of Eq. (3.12). In this generalized phase space with unwrapped phase variable
(the phase variable is considered on the real line rather than on the circle, and phase points separated
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Fig. 3.14. From Ref. [80]. Stable (in the * direction) (pluses) and unstable (5lled circles) periodic orbits with periods
1–8 forming the skeletons of the attractor and repeller, respectively (Eq. (3.12)). (a) Inside the full phase-locking region,
where the attractor and the repeller are distinct. (b) Just beyond the border of the phase-locking region at which the
attractor and repeller collide, the chaotic attractor as a whole is no longer attractive in the * direction.

by 21 are not considered as the same), the repellers are periodic orbits on the basin boundary of the
attractors [8]. When the parameter moves close and crosses the phase-locking boundary, the attractor
and the repeller of a few unstable periodic orbits approach to each other, coalesce and annihilate as
a result of the saddle-node bifurcation, as illustrated in Fig. 3.14(b). Hence, these unstable periodic
orbits are not locked by the external force and phase slips may occur. The dynamics in the weakly
unstable direction * is the same as in the usual saddle-node bifurcation with a characteristic time
between phase slips given by Eq. (3.24). However, just beyond the transition point, most of the
unstable periodic orbits are still attractive in the * direction, and phase slips can only develop when
the chaotic trajectory comes close to an unlocked periodic orbit. To allow at least one slip to occur,
the chaotic trajectory should stay for a time period �1 in a close vicinity of the unlocked periodic
orbit. Because of ergodicity, the probability for a trajectory to stay close to a particular unstable
periodic orbit for a duration �1 is proportional to exp(−!�1), where ! is the largest Lyapunov
exponent of the chaotic system [3]. The average time between successive phase slips is the inverse
of this probability, which reads,

�∼ exp(k |C − CPS|−1=2) : (3.25)

This relation indicates that PS epochs are extremely long for C close to CPS. It follows immediately
that close to the transition point, the average frequency diJerence, which is proportional to the
inverse of �, scales as

ln |W3 | ∼ − |C − CPS |−1=2 : (3.26)

The above consideration applies to both transitions where the system leaves the phase-locking region
when varying the external frequency.
Such super-long laminar periods between phase slips have been veri5ed in numerical simulation

of mapping Eq. (3.12) [80], as well as in direct simulation of the chaotic REossler oscillator driven
by external forcing [8,81]. The results are shown in Fig. 3.15.
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Fig. 3.15. From Ref. [80]. Frequency diJerence at the two borders of the phase locking region for the mapping system
in Eq. (3.12).

Similar arguments may be applied to coupled chaotic oscillators. However, the organization of the
phase-locking region of unstable periodic orbits may be much more complicated and has not yet been
calculated directly. Nevertheless, these super-long laminar periods of PS have been observed for C
rather close to CPS [92]. When C is getting further away from the critical point CPS, many unstable
periodic orbits are outside the phase-locking region. The probability to encounter an unlocked periodic
orbit becomes eJectively unity and phase slips occur much more frequently. The intermittency shifts
then from the super-long type to the usual type-I intermittency characterized by a power law in
Eq. (3.24) [92,93].
It has been also shown that in the PS region, additive noise has similar eJects to destabilize some

of the unstable periodic orbits in the direction of * and the noise-induced intermittent loss of PS has
the same scaling law as in Eq. (3.25) [22,94], which has been veri5ed experimentally in Ref. [95]
with coupled Chua’s circuits, as an example of superpersistent chaotic transients. However, if the
noises in both oscillators are strongly correlated, they tend to enhance phase synchronization when
C is outside the phase synchronization region, as will be discussed in Section 5.
As it is pointed out, desynchronization of phase-locking occurs when a certain unstable periodic

orbit becomes unstable in the direction of phase. This bears much similarity to the riddling bifurcation
in coupled identical systems where a certain unstable periodic orbit becomes unstable in the transverse
direction [96]. This similarity has been discussed in coupled periodically driven chaotic pendulums
where the phase itself is chaotic [97].
It is also interesting to note that the REossler system undergoes a periodic-doubling bifurcation when

the parameter a is changed. When driven periodically by an external signal, there is a corresponding
Arnold tongue for each periodic orbit. Ref. [98] studies the critical behavior of the limit of the
periodic-doubling cascade at the edge of the Arnold tongue, showing that the transition behavior
belongs to the cycle-type universal critical behavior [99] with scaling exponents distinct from those
of the usual Feigenbaum cascade [100].



32 S. Boccaletti et al. / Physics Reports 366 (2002) 1–101

3.3. Imperfect phase synchronization

In PS of chaotic oscillators, the time scales of one oscillator is entrained with another chaotic or
periodic oscillator. One would expect that the distribution of the time scales plays an important role
in the synchronization behavior. For example, in the chaotic REossler oscillators discussed above, the
return time varies, but the relative variation is rather small so that phase increases almost linearly
with time. As a result of this narrow distribution of time scales, the chaotic REossler oscillators
can be rather easily synchronized by weak forcing with a period close to the average return time
[8,74,79,81]. Considered from the viewpoint of unstable periodic orbits, these orbits have narrowly
distributed periods, and consequently, the phase-locking regimes are similar and all corresponding
Arnold tongues have an overlapping to guarantee complete PS of the chaotic attractor. In general,
a similar behavior can be observed in other systems with chaotic attractors originating from the
periodic-doubling scenario. However, as pointed in Ref. [78], it may not be possible to synchro-
nize some phase-coherent systems, even if they exhibit very small phase diJusion D*. This may
occur when the phase has a sensitive dependence on the amplitudes in the presence of an external
force.
However, the scenario changes if the system has a rather broad distribution of time scales of

periodic orbits. An external signal with a given frequency then may not be able to entrain all the
time scales in the system: phase slips occur when the chaotic 8ow comes to oscillate with time
scales outside the synchronization region of the driving signal and imperfect phase synchronization
is observed.
Refs. [13,101,102] have carried out a comparative study of perfect and imperfect PS with the

example of a periodically driven Lorenz system,

ẋ = 10(y − x) ;

ẏ = rx − y − xz ;

ż = xy − 2:667z + E cos(3t) : (3.27)

The unforced Lorenz system exhibits rich bifurcations when the parameter r is varied [45]. For r=
210, chaotic oscillations result from a periodic-doubling scenario, and the system can be synchronized
perfectly by a periodic driving signal with a frequency close to the average frequency 3 = 24:92
of the chaotic oscillations, as it can be seen by the plateau of the vanishing frequency diJerence
!−3=0 in Fig. 3.16. The situation becomes diJerent for r=28 where a certain plateau of !−3=0
appears; however, this plateau is neither horizontal nor lies at zero. As a result, PS in this case is
not perfect, as shown by 21 or 41 phase slips in Fig. 3.17
The reason for this imperfect phase synchronization lies in the broad distribution of the time scales

of the chaotic oscillations at r = 28. For this parameter, there is a saddle point (0; 0; 0) embedded
in the chaotic attractor. The trajectory slows down considerably when passing near the saddle point,
while the oscillation is much quicker when the trajectory rotates around one of the two unstable
foci [45]. Thus the time scales have a relatively large variation around the average value, as can be
seen in the distribution of the frequency of diJerent unstable periodic orbits (Fig. 3.18). Due to this
large variation of the frequencies, the phase-locking regions of the unstable periodic orbits do not
overlap to produce a full synchronization region of the chaotic attractor. For a given frequency and
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Fig. 3.16. From Ref. [13]. Perfect and imperfect phase synchronization for periodically forced Lorenz systems (Eq. (3.27));
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Fig. 3.17. From Ref. [13]. Phase slips of imperfect phase synchronization in periodically driven Lorenz system at r = 28
(Eq. (3.27)).

amplitude of the external driving signal, there exist certain unstable orbits which are not locked and
imperfect phase synchronization characterizes this complicated locking behavior.
Using the approach of unstable periodic orbits, it is demonstrated in Refs. [13,101,102] that a

phase slip develops when the system comes close to a certain unstable periodic orbit which is not in
a 1 : 1 phase-locking with the driving signal. More interestingly, a careful study reveals that during
such a phase slip, the system is in fact phase-locked with the driving signal with another locking
ratio, such as (l− 1) : l or (l− 2) : l. The possible value of l for these cases are l¿ l0 and l¿ 2l0,
respectively, where l0 is determined by the largest and smallest frequencies of the unstable periodic
orbits, i.e. l0 =!max=(!max−!min) (smaller l becomes possible due to the broadening of the Arnold
tongues). In such cases, the 1 : 1 phase-locking regions of some periodic orbits overlap with the
(l−1) : l or (l−2) : l phase-locking regions of some other periodic orbits, as explicitly illustrated in
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Fig. 3.18. From Ref. [13]. Individual frequencies of unstable periodic orbits embedded into the Lorenz attractor at r=28;
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Fig. 3.19. From Ref. [13]. Overlapping of phase-locking regions of diJerent locking ratios in the periodically driven
Lorenz system at r = 28 (Eq. (3.27)). Solid line: l= 7 (1 : 1), dashed line: l= 15 (14 : 15); dotted line: l= 20 (18 : 20).

Fig. 3.19. As a result, the system actually establishes phase locking to the driving signal with another
locking ratio rather than 1 : 1 phase-locking during the seeming phase slip. During the time course,
the system alternates among diJerent locking ratios when it visits periodic orbits with overlapping
Arnold tongues of diJerent locking ratios.
This study has made clear that PS is a matter of adjusting time scales by interaction. Synchro-

nization with diJerent locking ratios can be established when the system is shifting among diJerent
time scales. In the Lorenz system, the drifting of the time scales occurs when the chaotic trajectory
accesses closely to diJerent unstable periodic orbits. In other cases, the drifting can be induced
by nonstationarity of the process, such as in the human cardiorespiratory system, where alternating
locking ratio can be also observed [21,103], see Section 7.
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3.4. Lag synchronization of chaotic oscillators

It has been shown that when nonidentical chaotic oscillators are weakly coupled, the phases can be
locked while the amplitudes remain highly uncorrelated. What happens when the coupling strength
becomes larger? One would expect that with stronger coupling, a relationship between amplitudes
may be established. Indeed, it has been demonstrated that there exists a regime of lag synchronization
[9] where the states of two oscillators are nearly identical, but one system lags in time to the other. To
see how lag synchronization is established, we focus on the dynamics of the amplitudes (Eq. (3.15)).
With similar averaging processing except for the terms containing both the fast phases *1;2 and the
variables z1;2, one gets

Ȧ1;2 =
a
2
A1;2 − z1;2 cos(!0t + -1;2) +

C
2
(A2;1 cos(-1 − -2)− A1;2) ;

ż1;2 = f − cz1;2 + A1;2z1;2 cos(!0t + -1;2) ; (3.28)

which is a system of two coupled periodically driven oscillators. The driving signals cos(!0t+ -1;2)
in both systems, however, are not identical, but have a phase shift as in Eq. (3.17). If the two
oscillators are identical, then -1 − -2 = 0 and complete synchronization will be observed when
C¿CCS = 0:095. CCS is the coupling threshold where one of the two positive Lyapunov exponent
crosses zero and becomes negative. A small parameter mismatch W! = 0:02 shifts this transition
point to CCS = 0:11, and more importantly, introduces a nonvanishing phase shift in Eq. (3.17). For
C¿CCS, the system states may remain almost identical but with a time lag �0 = (-1 − -2)=!0, i.e.

x2(t + �0) ≈ x1(t); y2(t + �0) ≈ y1(t); z2(t + �0) ≈ z1(t) ; (3.29)

which is called lag synchronization.
To characterize lag synchronization quantitatively, a similarity function S(�) has been introduced

as the time averaged diJerence between the variable x1(t) and x2(t + �) (with mean values being
dropped)

S2(�) =
〈(x2(t + �)− x1(t))2〉√

〈x21(t)〉〈x22(t)〉
(3.30)

and searched for its minimum � = min� S(�) = S(� = �0). This measure is similar to the cross
correlation function 〈(x2(t+�)x1(t))2〉, but S is especially suitable for measuring lag synchronization
from bivariate time series because S(�0) ≈ 0 at a certain nonzero �0 indicates lag synchronization.
A typical feature of S for the coupled REossler oscillators are shown in Fig. 3.20 for diJerent values

of coupling C. When the system is in the PS regime, a minimum of S can already be seen clearly,
but � is well above zero, because even though the phases are locked, the phase diJerences 8uctuate
considerably around the average value !0�0. With increasing C both �0 and � decrease. When C
approaches Clag = 0:14 where � eJectively reaches zero at a nonzero �0, the system undergoes a
transition to lag synchronization. After identifying the time delay �0 by this similarity function S,
lag synchronization can be graphically illustrated directly by plots of x(t + �0) vs. x(t) which is
restricted to an almost straight line, as seen in Fig. 3.21(b). Ref. [104] has shown experimentally
that lag synchronization is robust to perturbations to some extent.
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Fig. 3.21. Same system as in Fig. 3.20. Illustration of lag synchronization at C = 0:20. (a) Plot of x1(t) vs. x2(t) shows
that the system are not completely synchronized; (b) Plot of x1(t) vs. x2(t + �0) with �0 = 0:21, the straight line exhibits
lag synchronization.

One should note that with the increase of the coupling strength C, the phase shift in Eq. (3.17)
approaches to zero. With vanishing �0, the two nonidentical oscillators tend to be synchronized
almost completely, i.e. x1(t) ≈ x2(t).
It is also important to point out that the transition to lag synchronization at Clag = 0:14 is well

beyond the transition where one of the positive Lyapunov exponent becomes negative at CCS =0:11.
The diJerence in between will be discussed in the next section.

3.5. From phase to lag to complete synchronization

We have shown that two coupled nonidentical chaotic oscillators undergo transitions from phase
to lag and then to almost complete synchronization with increasing coupling strengths. As has been
pointed out in Section 3.1.2, in a deterministic time-continuous autonomous chaotic 8ow there is
a zero Lyapunov exponent corresponding to the translation dx(t) along the chaotic trajectory. In a
phase coherent chaotic oscillator, dx(t) can be uniquely mapped to a shift of the phases d*(t) of
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the oscillator. If both oscillators are not phase synchronized, there are two zero-Lyapunov exponents
linked to individual phases. When the two coupled chaotic oscillators achieve PS, the initial phase
diJerence converges to that in Eq. (3.17), and in accordance with this stability of phases, one of
the two zero Lyapunov exponents undergoes a transition to negative values. With further increase of
the coupling strength, another Lyapunov exponent undergoes a transition from positive to negative
values, and we get a strong correlations of the amplitudes too. When the parameter mismatch is
small, this transition point is close to that of CS in coupled identical oscillators. As discussed in
the last section, one would observe lag synchronization somewhere beyond this transition point in
coupled nonidentical oscillators.
Ref. [9] has demonstrated this connection between the transitions of Lyapunov exponents and

synchronization stages for the coupled REossler systems. The results are summarized in Fig. 3.22.
Shown along with the Lyapunov exponents are the average frequency diJerence W3, the minimum
� of S(�) and the time lag �0. First, shortly before the transition to PS at CPS = 0:036, one of the
zero Lyapunov exponents becomes negative, while the transition to lag synchronization at Clag=0:14
happens signi5cantly after the zero crossing of one of the positive Lyapunov exponents at CCS=0:11.
Let us pay more attention to the regime in the region 0:11¡C¡0:14 where � has small values,

but is not eJectively zero. The typical behavior there is intermittent lag synchronization [9] where
lag synchronization is interrupted by intermittent burst of large synchronization error x1(t)− x2(t +
�0), as seen in Fig. 3.23(a) for C = 0:13, which is very similar to the intermittent loss of CS in
coupled identical systems [61,105,106] when the coupling strength is just beyond the synchronization
threshold and the system is subjected to small perturbations. To understand this bursting behavior of
lag synchronization, we go back to Eq. (3.28). Introducing the lag variables for the second system
Ã2 = A2(t + �0), z̃2 = z2(t + �0) where �0 = (-1 − -2)=!0, we can reduce system equation (3.28) to
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Fig. 3.23. Intermittent lag synchronization at C = 0:13. (a) n= 0, (b) n= 1, (c) n= 2, and (d) n= 3.

a system of two coupled identical systems under an identical driving signal and some additional
perturbation terms '1 and '2,

Ȧ1 =
a
2
A1 − z1 cos(!0t + -1) +

C
2
(Ã2 − A1) + '1 ;

ż1 = f − cz1 + A1z1 cos(!0t + -1) (3.31)

and

˙̃A2 =
a
2
Ã2 − z2 cos(!0t + -1) +

C
2
(A1 − Ã2) + '2 ;

˙̃z2 = f − cz̃2 + Ã2z̃2 cos(!0t + -1) (3.32)

with

'1 =
C
2
(A2 cos(-1 − -2)− Ã2)
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and

'2 =
C
2

A1[ cos(-1 − -2)− 1] :

Now if we ignore the perturbation terms '1 and '2 for a moment, the two coupled identical
oscillators will achieve CS, when one of the two positive Lyapunov exponents becomes negative at
CCS = 0:11, i.e. A1 = Ã2. Note that when the coupling strength is well beyond the synchronization
threshold CCS, CS is robust to perturbations, i.e. the synchronization error is limited to a level
comparable to that of the perturbations. Furthermore, the perturbation terms in general decrease with
decreasing �0 at stronger coupling strength. As a consequence, we observe lag synchronization with
A1 ≈ Ã2 after C=0:14. Just beyond the transition point CCS=0:11, the CS of the system is sensitive
to perturbations of '1 and '2, and the synchronization error A1− Ã2 may have an excursion to large
values comparable to the order of A1 or Ã2 during the burst of desynchronization. Correspondingly,
we observe intermittent lag synchronization, as shown in Fig. 3.23(a). The desynchronization bursting
becomes more and more frequently when C is approaching CCS, and a clear lag synchronization can
no longer be observed.
A more detailed investigation in Ref. [12] has shown that bursting of lag synchronization between

A1(t) and A2(t + �0) could be lag synchronization between A1(t) and A2(t + �n) with another time
lag �n = �0 + nT , where T is the mean return time of the chaotic orbits of the REossler system. As
illustrated in Fig. 3.23, large synchronization error during the desynchronization bursting between
A1(t) and A2(t + �0) becomes relatively small between A1(t) and A2(t + �n) for n = 1; 2; 3. This
understanding comes from the observation that the similarity function in Eq. (3.30) actually has
multiple minima at �n = �0 + nT .
The above described synchronization transitions and their connection with the changes of the

Lyapunov exponents should be general for phase coherent chaotic oscillations where a phase variable
can be de5ned properly as a monotonously increasing function of time. However, in many chaotic
oscillators, the time translation along the chaotic trajectory may not be able to be mapped uniquely
to a phase variable, and perfect phase locking may not be observable. In such a case, generally one
may not observe a coincidence of the transition of PS and that of zero Lyapunov exponent. PS of
this type has been discussed with funnel chaotic REossler oscillators [74,107,108]. Indirect criteria,
such as the amplitude of the ensemble average of the system, has been proposed to detect PS of
chaotic oscillators without coherent phase dynamics.

3.6. The generalized synchronization

In the previous paragraphs of this section, we have reviewed synchronization phenomena in cou-
pled nonidentical chaotic oscillators. In general, when there exists an essential diJerence between
the coupled systems, there is no hope to have a trivial manifold in the phase space attracting the
system trajectories, and therefore it is not clear at a 5rst glance whether nonidentical chaotic sys-
tems can synchronize. Two central issues are the “milestones” of the subject. The 5rst is that one
should generalize the concept of synchronization to include nonidenticity between the coupled sys-
tems. The second is that one should design some tests to detect it. Many works have shown that
this type of chaotic synchronization can exist [5,10], and have called this phenomenon generalized
synchronization. In most cases, evidence of it has been provided for unidirectional coupling schemes.
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In order to de5ne generalized synchronization (GS) for an unidirectional coupling scheme, let us
consider the following coupled system:

ẋ = F(x) ;

ẏ =G(y; hB(x)) ; (3.33)

where x is the n-dimensional state vector of the driver and y is the m-dimensional state vector of the
response. F and G are vector 5elds, F :Rn → Rn, and G :Rm → Rm. The coupling between response
and driver is ruled by the vector 5eld hB(x) :Rn → Rm, where the dependence of this function upon
the parameters B is explicitly considered. When B = 0, the response system evolves independently
of the driver, and we assume that both systems are chaotic.
Some slight diJerences in the de5nition of GS exist in the literature. Here, we will focus on

the more general de5nition given in Refs. [10,11,109]. When B 
=0, the chaotic trajectories of the
two systems are said to be synchronized in a generalized sense if there exists a transformation
 :x → y which is able to map asymptotically the trajectories of the driver attractor into the ones
of the response attractor y(t) =  (x(t)), regardless on the initial conditions in the basin of the
synchronization manifold M = {(x; y) : y =  (x)}.
Let us illustrate the concept of GS with an example, which is taken from Ref. [10]. We consider

two coupled REossler systems in a driver–response con5guration

ẋ1 = −(y1 + z1)

ẏ 1 = x1 + ay1

ż1 = f + z1(x1 − B)


 driver ;

ẋ2 = −(y2 + z2) + · · ·+ c(x1 − x2)

ẏ2 = x2 + ay2

ż2 = f + z2(x2 − B)


 response ; (3.34)

where a=0:2, f=0:2 and B=5:7. For c=0:1 the coupled systems are in an unsynchronized state,
while for c = 0:2 they are in a CS state. This is shown in Fig. 3.24(a) and (b), where we have
plotted y2(t) vs. y1(t). Here, the behavior of a CS state appears as a sharp straight line y2 = y1 for
c = 0:2:
It is possible to construct other response system which exhibits a generalized kind of synchro-

nization motion with the driver, by making a simple nonlinear transformation among the response
variables (x2; y2; z2). The following transformation is used in order to create a new response system:

x3(t) = x2(t) ;

y3(t) = y2(t) + Cz3(t) + �z3(t)2 ;

z3(t) = z2(t) (3.35)

with C = 0:4 and �=−0:008.
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Fig. 3.24. The projection on the plane (y2; y1) of the chaotic attractor generated by Eq. (3.34) for a coupling strength of
c = 0:1 (a) and c = 0:2 (b).

The new response system should be synchronized with the driver for c=0:2, because it is obtained
applying a smooth change of coordinates. However in this case, the motion does not occur in a single
straight line as we can see in Fig. 3.25. There is a more complex object attracting the trajectories,
which at glance could be taken as a sign of a nonsynchronized state. We can conclude from this
simple example that GS can take place in an attractor with a complex structure. Then, to distinguish
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Fig. 3.25. The projection on the plane (y3; y1) of the chaotic attractor generated by Eq. (3.34) with the coordinate
transformation given by (3.36), for a coupling strength of c = 0:2.

when two variables are synchronized in a generalized sense is a more complicated subject than
detecting a CS state.
As said above, this is not the only de5nition of GS in the literature, the diJerences being based

in the mathematical properties required for the map  . The notion of GS was introduced assuming
essentially the existence of a homeomorphic map  [5], but later diJeomorphic properties have been
required [110]. Furthermore, Ref. [37] distinguishes between two types of GS, namely the so-called
weak synchronization (WS) and the strong synchronization (SS). SS(WS) corresponds to the
case of a map  which is (which is not) smooth, in the sense of being (not being) diJerentiable.
An even stronger version of SS is considered in Ref. [111], called di<erentiable generalized
synchronization, requiring the continuous diJerentiability of  . All of these diJerent approaches
have relevant consequences when one looks for the existence of GS in experimental data, as we will
outline later.
Kocarev and Parlitz [11] formulated the necessary and suScient conditions for the occurrence of

GS in the system (3.39). As in the case of CS, the notion of GS is equivalent to the asymptotic
stability of the response system. Let us recall that the response system is said to be asymptotically
stable if limt→∞ ‖y(t; x(0); y1(0)) − y(t; x(0); y2(0))‖ = 0, where (x(0); y1(0)) and (x(0); y2(0)) are
two generic initial conditions of system (3.33) in the basin of the synchronization attractor. In other
words, a map y =  (x) (not necessarily smooth) exists whenever the action of the driver results
in the response forgetting its initial condition. We will show later that this property allows one to
introduce a useful criterion to detect GS [37,109].
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The stability of the manifold M of GS can be determined as in the case of CS, i.e. by the
negativity of conditional Lyapunov exponents [37], the use of Lyapunov functions [11] and the
criterion given by Eq. (2.14) [112]. In addition to the problem of stability, other issues related with
the existence of GS are crucial, especially when trying to detect it in experiments, where one is often
interested in discerning whether some synchronization features appear. To this purpose, some useful
statistical parameters have been introduced to test the existence of the map  and to determine its
mathematical properties. One of these approaches is given in Ref. [10], which de5nes a mutual false
neighbors’ parameter r signaling the existence of a one to one smooth map between two dynamical
variables. The de5nition of this parameter is based on the condition that the close points in the
reconstructed space of the driver dynamics should have close images in the reconstructed space of
the response dynamics, allowing to establish the continuity of  , and thus inferring the existence of
a GS state. The de5nition and an application of r will be given in the next chapter.
Pecora et al. gave a complete discussion on how to characterize a functional relationship between

two dynamical variables whose temporal behavior is obtained from time series in an experiment
[110]. In this work, suitable statistical parameters are introduced and applied to test the mathematical
properties of the map  , i.e. to test whether or not the mapping is continuous, injective, diJerentiable
and with a continuous inverse. The implementation of these tests is discussed in a general context
that includes the synchronization problem along with a test for determinism and the problem of
5ltering.
A further method to characterize dynamical interdependence among nonlinear systems based on

mutual nonlinear prediction is given in Ref. [113]. This method provides information on the direc-
tionality of the coupling, and therefore it can be used to detect GS between dynamical variables.
This technique was applied to detect GS in a neuronal ensemble.
Based on the equivalence between GS and the asymptotic stability of the response in system

(3.33), a useful physical criterion have been suggested to detect GS in an experiment [37,109]. As
said above, GS in the system (3.33) exists if the response system is asymptotically stable. Therefore,
one can construct an auxiliary system (a system identical with the response), driven by the same
driving system

ẏ′ =G(y′; hB(x)) : (3.36)

In this framework, y(t) is said to be synchronized with x(t) in a generalized sense if limt→∞
‖y′(t)−y(t)‖=0. This is tantamount to state that GS between x(t) and y(t) occurs if CS takes place
between y′(t) and y(t). The main advantage of this criterion is the easy detection of CS between
y(t) and y′(t). On the other hand, the possibility of building an identical copy of an experimental
device is often a very diScult task.
Let us now move to discuss an example of GS analyzed in Ref. [37], where it is shown how

the properties of the map  change when the coupling is increased. Let us consider the following
coupled systems

ẋ1 = −!(x2 + x3)

ẋ2 = !(x1 + 0:2x2)

ẋ3 = !(0:2 + x3(x1 − 5:7))


 driver ;
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Fig. 3.26. From Ref. [37]. (a) Maximal conditional Lyapunov exponent; (b) correlation dimension dc and Lyapunov
dimension d!; (c) thickness parameter � for the coupled system equation (3.37) as function of the coupling strength (see
text).

ẏ1 = 10(−y1 + y2)

ẏ2 = 28y1 − y2 − y1y3 + kx2

ẏ3 = y1y2 − 8
3y3


 response : (3.37)

In the above equations, the driver is a REossler system, whereas the response is a Lorenz system.
The parameter ! sets the characteristic time scale of the driving. In addition, let us consider an
auxiliary system y′(t). The coupling aJects only the evolution of y2 (via the term kx2), and the
coupling strength is ruled by k.
The behavior of the above system has been studied in Ref. [37], where a transition between

WS and SS is shown as k increases. The threshold for this transition is found with the help
of the auxiliary system y′(t) or by determining the value of k where the real part of the largest
conditional Lyapunov exponent crosses zero (!R

1 = 0). In Fig. 3 of Ref. [37], whose 5gures a, b
and c are reproduced in the Fig. 3.26 of this report, it is shown that the threshold of WS is
equal to kw ≈ 6:66 (Fig. 3.26(a)). The onset of WS is characterized by a noticeable decrease of
the correlation dimension dc [114] and the Lyapunov dimension d! [115] (Fig. 3.26(b)). In order
to determinate how the smoothness of  changes when the coupling is increased, the thickness
parameter � is measured for each value of the coupling. � is de5ned as the root of the local mean
square deviation of a local linear interpolation map of points of the whole chaotic attractor. For
k¿40, the value of dc and d! saturates to the one corresponding to the attractor of the driving
system, and � saturates to zero. These features indicate that the map  is smooth, and then SS
sets on.
The fact that a map y =  (x) exists suggests that the state of the response system could be

predicted by knowledge of the state of the driver whenever they are in a GS state.
If the functions F, G and h in Eq. (3.33) are known, which is not the typical case in an experiment,

the analytical technique for approximating  is based on the methods used on approximate center
manifolds. An exhaustive discussion on center manifold theory can be found in Ref. [116] and the
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application of this theory to the mapping between systems exhibiting GS can be found in Ref. [112].
In the following, we will brie8y outline this technique.
If the drive and the response systems are given by (3.33), the following partial diJerential equation

can be derived [116]:

G( (x); h(x))−Dx (x)F(x) = 0 (3.38)

which is valid on the synchronization manifold y =  (x). Here again Dx represents the Jacobian
matrix. While in most cases Eq. (3.38) cannot be solved exactly, an arbitrarily close solution can
be approximated by a Taylor series

 (x) = A + B · x + x · L · x + · · · : (3.39)

Plugging (3.39) into (3.38), a solution can be written as a polynomial in powers of x, when the
coeScients of each power of x vanishes. By equating each coeScient to zero, one obtains a set of
algebraic equations involving the parameters of the functions F(:), G(:), h(:) and the elements of
A;B;L. Finally, by solving the equations for the coeScients of A;B;L; in terms of the parameters
of the functions F(:), G(:) and h(:), one can obtain a proper approximation for  .
However, the most general case corresponds to unknown functions in system (3.33). In this

situation and when GS is stable, one can approximate  only by means of numerical methods. One of
these methods uses local polynomial mapping in the reconstructed spaces of the driving and response
systems [10,109]. The nonlinear function G(:) is represented as a collection of local polynomial
mappings, which are diJerent for diJerent neighborhoods in the phase space. The parameters of
each map are determined by least-squared 5ttings using simultaneous measurements of the driver
and the response. An alternative numerical procedure for approximating  is based in the expansion
of this map in a set of basis functions [112].

3.7. A mathematical de9nition of synchronization

In the previous sections, we have discussed diJerent types of synchronized motions. The above
plethora of theoretical studies as well as the large number of experimental veri5cations call for a
unifying framework for synchronization of coupled dynamical systems. In the course of the last
decades, several attempts have been put forward in that direction, and we will refer here to the most
recent ones.
After a 5rst attempt to de5ne synchronized motion [117], recently Brown and Kocarev [118]

provided a mathematical de5nition, assuming to have a system divisible into two subsystems in
which functions (or properties) can be de5ned, consisting in mappings from the space of trajectories
and time to some Cartesian space. Formally, this implies that the total system is seen as w =
[x; y]; w∈Rm1+m2 ; x∈Rm1 ; y∈Rm2 , with each subsystem forming a trajectory *x(w0) and *y(w0)
(w0 being a given initial condition). The two trajectories are then mapped by the properties gx

and gy to a new space Rd. Finally, in order to de5ne a synchronized state, Ref. [118] requires a
function h(gx; gy) with either ‖h‖ = 0 or ‖h‖ → 0 asymptotically, with the choices of gx; gy and
h determining the type of synchronization. This approach leads to the idea that there are diJerent
kinds of synchronization which might be captured in a single formalism.
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The de5nition of Ref. [118] makes use of trajectory spaces, that are needed because several
de5nitions of synchronization are based on averages or integrals over (in5nitely) long time segments
of system trajectories.
In fact, the formalism may be simpli5ed and generalized, in such a way that it captures all the

cases that the above approach does along with an entire class that were missed. This extension has
been recently proposed [119], and will be summarized here.
To begin, assume that a system Z∈Rm1+m2 can be divided into two subsystems, X∈Rm1 and

Y∈Rm2 . Typically, when one thinks of synchronized states, one means that an event in one sub-
system (say y) corresponds always to a particular event in the other subsystem (say x). In a more
mathematical language, these events can be identi5ed with points in the phase or state space and
one can capture the notion of predictability by saying that there exists a function from X to Y such
that a particular point in X is mapped, uniquely, to one point in Y.
More realistically, when one looks for evidence of synchronization in experiments or in numerics,

one never has data falling right on a given x̃ or on a given ỹ. Rather, the normal situation is that
the closer x(t) is to x̃ the closer y(t) should be to ỹ. This latter statement is rigorously attained
with a continuous function, that is a mapping of the trajectories of x(t) close to x̃ near to ỹ by a
function that is continuous at the point (x̃; ỹ).
However, a more stage is necessary. Suppose to consider a curved one-dimensional manifold in

a two-dimensional phase space (m1 =m2 = 1), and assume that the dynamics hold on that manifold.
The general case does not allow to construct a continuous function from x to y. However, suppose to
consider a transformation F :Z→W (w=F(z)) that “straightens out” the manifold, and transforms
it into a straight line. Now, the two projections of the transformed system u = P1(w)∈U; v =
P2(w)∈V form a synchronization manifold and one can de5ne a synchronous state at any pair of
points (ũ; ṽ). From the above example we learn that, in order to investigate synchronization states,
the separation of the global system into subspaces is a very delicate and crucial operation, and should
be performed only after a proper transformation of the global phase space is selected to disentangle
“hidden” or latent synchronization features. Furthermore, any types of property functions gu and gv

used in Ref. [118] may be captured using a 8ow and then a general transformation g=(gu; gv) which
splits into the two properties.
Another important point to remark is that, for some applications, the dimensions of the 5nal space

may diJer from the ones of the original phase space. Therefore, for the sake of generality, in the
following we will refer to a function F :Rm1+m2 → Rd1+d2 , where d1 + d2 do not necessarily add to
m1 + m2 = m.
At this point, we have all the main ingredients that are needed to build up a general de5nition

of synchronization: (1) a function from the original phase space z to a new phase space (u; v), (2)
the projections P1 and P2 onto the components of the new space, (3) the synchronization relation,
a continuous function.
A 5rst step is re5ning the de5nition of continuous function to include consistency with the dy-

namics.

De.nition. A function f is a synchronization function at (ũ; ṽ) if (a) ṽ=f(ũ); (b) it is continuous
at ũ and (c) it is consistent with the dynamics (u(t); v(t)) locally; that is; if : and ) are a valid
pair for the continuity property (|u− ũ|¡: implies |f(u)− ṽ|¡)); then the dynamics is such that if
|u(t)− ũ|¡: we have |v(t)− ṽ|¡).



S. Boccaletti et al. / Physics Reports 366 (2002) 1–101 47

The above said means that, near (ũ; ṽ) the function f well describes the predictability of subsystem
V from subsystem U.
Let us now pay attention to initial conditions and time. Let B be the basin of attraction of an

attractor A for a dynamical system Z ⊂ Rm, and let P1 and P2 be projectors from Rd1+d2 to Rd1

and to Rd2 , respectively.

De.nition. For a given function F :Rm → Rd1+d2 ; a dynamical system Z ⊂ Rm contains locally
synchronous subsystems in z̃ ∈A if ∀z0 ∈B there is a time T such that for t¿T a synchronization
function exists at (ũ=P1(F(z̃)); ṽ=P2(F(z̃))).

We 5rst remark that the above de5nition is local, i.e. one can think of the subsystems as having
properties u and v which are synchronous only near part of the trajectory (close to z̃), but cannot
say what the relationship is between u(t) and v(t) anywhere else in the attractor. The particular type
of synchronization is determined by the nature of the functions f and F.
Of course, one is interested in extending the de5nition to the entire trajectory so as to have a

single continuous function on the whole image of the attractor under F. This extension, in spite
of being just a matter of having enough points of local synchronization, is a very delicate pro-
cess. Indeed, one wants every point on the trajectory be mapped by a unique continuous function
between the two subsystems u and v, while the above de5nition warrants that a given function
is associated with each synchronization pair (ũ; ṽ), and the functions may be diJerent in their lo-
cal continuity, that is the valid : and ) pairs do not need to have any particular relationship be-
tween diJerent synchronization functions. In order to cope with this situation, and to provide a
rigorous extension in a theorematic way, one needs to add a further feature, namely a “covering”
property.

De.nition. If {ui} is a set of points on U and {fi} is a set of continuous functions; one associated
with each ui; from U to V; then the functions provide a continuity covering of U if ∀j¿0 the set
of all valid :i’s associated with j (one for each (ui; fi) pair) covers the set U.

Now we are ready for demonstrating the following theorem:

Theorem. If the subsystem U contains a set of synchronization points {ui} and the associated
functions {fi} provide a continuity covering of U; then there exists a unique; global; continuous
synchronization function f :U→ V.

Proof. Let us 5rst demonstrate that the function f is uniquely de5ned. To this purpose; we proceed
by absurdity; and suppose there exist two diJerent realizations of the dynamics z1 ∈A and z2 ∈A
such that P1(F(z1)) = P1(F(z2)) = u; P2(F(z1)) = v1; P2(F(z2)) = v2. We call ' = |v1 − v2|
the distance between the two images of z1 and z2 in Rd2 ; and we pick j¡'=2. We call uk the
synchronization point whose neighborhood of radius :k(j) contains u (the above covering property
warrants its existence). Furthermore; we call fk the associated synchronization function. Now; fk is
(by de5nition) consistent with the dynamics. Therefore; |fk(uk)− v1|¡j and |fk(uk)− v2|¡j. The
latter two inequalities may be added; and; by use of the triangular inequality; one obtains |v1−v2|¡';
which contradicts the hypothesis. As a consequence; a unique function f exists mapping all points
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u∈U into the corresponding points v = f(u)∈V. The second part of the proof is to show that
f is continuous at all points u∈U. By de5nition; ∀j=2 there is a :j associated with one of the
synchronization points uj such that |u− uj|¡:j. We pick :¿0 so that the set S: = {u′ : |u′ − u|¡:}
is completely contained in the set of points within :j around uj. Due again to consistency of fj

with the dynamics; ∀u′ ∈ S: one must have |f(u′) − fj(uj)|¡j=2. On the other side; one also
has |fj(uj) − f(u)|¡j=2. Therefore; by use again of the triangular inequality; it comes out that
|f(u′)− f(u)|¡j whenever |u′ − u|¡:.

What is discussed above provides a de5nition of perfect synchronization. In many realistic ap-
plications (such as in experiments) noise or 5nite measurement resolutions are unavoidable. It is
useful, therefore, to introduce a fuzziness parameter, setting up a minimal coarsening scale at which
states in one projected set may be associated with states in the other.

De.nition. For a given function F :Rm → Rd1+d2 ; a dynamical system Z contains locally �-synch-
ronous subsystems in z̃ ∈A if ∀z0 ∈B there is a time T such that ∀j¿� ∃:¿0 such that t¿T
and |P1(F(9(t; z0)))−P1(F(z̃))|¡: ⇒ |P2(F(9(t; z0)))−P2(F(z̃))|¡j:

It is evident that this last de5nition recovers the previous one for � → 0. � 
=0 is tantamount
to saying that the consistency of the synchronization function with the dynamics holds only up
to a minimum scale, which gives the minimal coarsening or precision scale that must be used in
experiments to detect synchronization features.
An important remark is the following: even though the value of the fuzziness parameter is not

constrained in the de5nition, if � is larger than the diameter of P2(F(A)), then the above is trivially
satis5ed ∀:¿0 and ∀z0 ∈B. The only relevant cases are the ones in which � is considerably smaller
than the diameter of P2(F(A)).
Finally, global �-synchronization may be identi5ed as the situation where local �-synchronization

is displayed regardless on the particular choice of z̃ ∈A.
With the help of the above set of de5nitions, one can easily show that diJerent synchronization

phenomena can be encompassed within a single framework (for all details, we address the reader
to Ref. [119]). Here we summarize the speci5cations for generalized, complete and lag synchroni-
zation.
GS and CS are characterized by the fact that the asymptotic evolution of the system occurs within

a manifold de5ned by y = K(x), K being a generic function (CS is the case for which m1 = m2

and K coincides with the identity). In our framework, GS can be considered as a particular case
of global synchronization with � = 0. Indeed, let F be the function with ith components given by
Fi = K(x)i ; i = 1; : : : ; m2; Fi = yi; i = m2 + 1; : : : ; 2m2. Note that here d1 = d2 = m2; therefore the
dimensions of the 5nal state equal m only when m1 = m2. Our de5nition of global synchronization
(for �=0) is tantamount to saying that ∀j¿0 ∃:¿0 such that |K(x)−K(x̃)|¡: ⇒ |y−ỹ|¡j; ∀z̃ ≡
(x̃; ỹ). Now, if z̃ is on the synchronization manifold, GS implies that |y − ỹ| asymptotically equals
|K(x)− K(x̃)|, so that our de5nition is veri5ed with := j.
LS refers to a case in which asymptotically |x(t) − y(t − �lag)|¡R, for a given lag time �lag.

LS can be identi5ed with a global �-synchronization phenomenon. Consider F as having
components given by Fi = zi; i = 1; : : : ; m1; Fi = 9i[ − �; z(t)]; i = m1 + 1; : : : ; m1 + m2. Here,
9[t; z0] is the 8ow function giving z(t) from the initial condition z0, and we are explicitly
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considering invertible 8ows. F is a point to point function in the space Rm. It is easy to show
that �= 2R and :(j) = j− 2R satisfy our de5nition of global � synchronization in the transformed
space.
Furthermore, practical analysis tools are nowadays available that allows to reconstruct dimensions

of subspaces for coupled dynamical systems in order to validate the above formalism with multivari-
ate data sets [120], or to detect dynamical interdependence [121] and synchronized motions [122].
These recent achievements have followed previous attempts of detecting synchronized motions and
mutual dependence of variables in practical situations [113,123–129].

4. Synchronization in structurally nonequivalent systems

4.1. Synchronization of structurally nonequivalent systems

All what is said above describes the situation of coupled structurally equivalent systems, i.e. either
equivalent systems or systems where the nonidentity resulted in a rather small parameter mismatch.
Only recently the study of synchronization phenomena for large parameter mismatches has been
addressed [130], by description of the appearance of synchronized collective motion in systems with
more than 50% mismatch in parameters.
However, in nature one cannot expect to cope with coupled low-dimensional systems which are

structurally equivalent. Therefore, it becomes important to extend the concept of synchronization to
the case of structurally nonequivalent systems, i.e. systems generating chaotic attractors with high and
diJerent fractal dimensions. This process has been investigated in Ref. [20], and will be summarized
along this section.
Let us begin with an example. Consider the symmetric coupling of two chaotic systems, the 5rst

giving rise to a solution x1 with the fractal dimension D1 and the second to a solution x2 with
the fractal dimension D2 (with D1 
=D2). Now, synchronization is associated with the emergence of
some dynamical relations between the two outputs. Suppose the two systems reach a CS regime,
which implies x1(t) = x2(t) = x(t). Now, a natural question arises: which is the fractal dimension
of the synchronization manifold x(t)? In other words, which is the dynamical process associated
with the primer of synchronized states, bringing the two system to adjust themselves on the same
structure (the synchronization manifold)? Ref. [20] has shown that synchronized states for structurally
nonequivalent systems can be realized either in a chaotic manifold, with dimension lower with respect
to both uncoupled systems, or even in a periodic manifold.
In what follows we will specialize the above example to the case of two coupled delayed dynamical

systems (DDS). The general form for a DDS is ẏ=F(y; yd), where y is a real variable and yd ≡
y(t−T ), T being a delay time. The increasing interest of the physics community for DDS is due to
the fact that they provide a natural link with space extended systems by means of the two variable
representation of the time t=�+-T (06 �6T being a continuous space-like variable, and - being
a discrete temporal variable). This representation, 5rst introduced in Refs. [131,132], allows one
to convert long-range interactions due to the delay into short-range interactions along the direction
-, since now yd ≡ y(�; - − 1). Furthermore, in that framework, the formation and propagation of
space–time structures, as defects and=or spatiotemporal intermittency has been identi5ed [133] and
controlled [134].
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For the sake of exempli5cation, we now refer to a pair of symmetrically coupled Mackey–Glass
systems:

ẋ1;2 =−0:1x1;2(t) + 0:2
x1;2(t − T1;2)

1 + x1;2(t − T1;2)10
+ j(x2;1(t)− x1;2(t)) ; (4.1)

where x1;2 are real variables, T1;2 are delay times, and 06 j¡1 is a coupling strength. The case
of identical DDS (T1 = T2) has been studied in Refs. [135,136], even in a high-dimensional chaotic
case, while here we will focus explicitly on nonidentical DDS (T1 
=T2). It is a well known
property of DDS that their fractal dimensions depends linearly upon the delay time [137,138].
This means that, by selecting T1 
=T2 and by choosing T1;2 suSciently large, for j = 0 the two
systems (4.1) generate high-dimensional chaotic signals with quite diJerent fractal dimensions,
and therefore they come out to be con5ned within structurally diJerent chaotic
attractors.
Let us now move to investigate the eJect of j 
=0 in Eqs. (4.1). It is important to mention at this

stage that the scenario we are going to describe is a general feature of system (4.1), regardless on
the particular choice of the delay times. However, for the sake of exempli5cation, in the following
we will select T1=100 and T2=90. The two signals x1(t) and x2(t) at j=0 are shown in Fig. 4.1(a),
and they appear to be uncorrelated (Fig. 4.1(b)).
A gradual increase in the coupling strength j builds up correlations between x1 and x2, consistently

with what was observed in Ref. [7] for a symmetric coupling between a chaotic and a hyper-chaotic
REossler system. (Fig. 4.1(c), j= 0:3), which is yet chaotic.
A 5nal sharp transition is observed toward a periodic state, which is reached for large j values

(Fig. 4.1(e), j = 0:65), where the coupled system of Eqs. (4.1) collapsed onto a simple periodic
attractor. As a result, a large structural change in system (4.1) is associated with the increasing
of j.
In order to more quantitatively characterize the appearance of synchronization in system (4.1), one

can make use of the mutual false nearest neighbors (MFNN) parameter [10,139]. To this purpose,
consider three embedding spaces, namely S1, S2 and S3. S1 is the embedding space of x1(t) at the
5xed embedding dimension m1, S2 is the embedding space of x2(t) at variable embedding dimension
m2, and S3 is the embedding space of x2(t) at the 5xed embedding dimension m1. One then chooses
randomly n state vectors xn

1 in S1 and considers the images xn
2 and xn

3 in S2 and S3. Furthermore,
one calls xn

1;NN1 (xn
3;NN3) the nearest neighbor to xn

1 (xn
3) in S1 (S3). In the same way, the nearest

neighbor xn
2;NN2 to xn

2 in S2 is considered, and one calls xn
1;NN2 (xn

3;NN2) the image of xn
2;NN2 in S1

(S3). Finally, the MFNN parameter is de5ned as [10,139]

r =

〈
|xn

1 − xn
1;NN2|2

|xn
1 − xn

1;NN1|2
|xn

3 − xn
3;NN3|2

|xn
3 − xn

3;NN2|2
〉

n

; (4.2)

where 〈· · ·〉n denotes the averaging process over n. In Refs. [10,139] it has been shown that r ≡ 1
for systems showing GS, whereas r 
=1 for not synchronized systems.
In Fig. 4.2(a) we report the dependence of r upon m2, at 5xed m1 = 25 for j6 0:1, as well

as for m1 = 15 at j¿0:1. On the other hand, Fig. 4.2(b) reports r as a function of j for m2 =
35, and m1 = 25 (j6 0:1), m1 = 15 (j¿0:1). The primer of a synchronized state is detected at
j � 0:15.
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Fig. 4.1. (a; c; e) Time evolution of signals x1 and x2 of two coupled Mackey–Glass systems equation (4.1) for j=0 (a,
uncoupled case), j=0:3 (c, synchronized chaotic state), and j=0:65 (e, synchronized periodic state). (b; d; f ) Projections
of the attractor of system (4.1) on the plane (x1; x2) for j = 0 (b), j = 0:3 (d), and j = 0:65 (e). In (a; c; e) the signal
x2 is conveniently vertically shifted.

4.2. From chaotic to periodic synchronized states

When structurally equivalent systems are considered [7], in general the emergence of synchro-
nization can be associated with a continuous slow variation in the Lyapunov spectrum, leading to
sequential changes in the signs of the positive Lyapunov exponents. On the contrary, for structurally
nonequivalent systems, the occurrence of a periodic synchronized state is associated with an abrupt
transition in the Lyapunov spectrum. Here, many positive Lyapunov exponents passes to negative
values at once.
What is said above is con5rmed in Fig. 4.3, where the Kaplan–Yorke or Lyapunov dimension

D! of Eq. (4.1) (Fig. 4.3(a)) as well as the number of positive Lyapunov exponents (Fig. 4.3(b))
are reported vs. the coupling strength. At small j, a slow continuous decreasing process of the
Lyapunov dimension is observed, in a consistent way with what happens for structurally equivalent
systems.
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Fig. 4.2. (a) MFNN parameter r [10,139] (Eq. (4.2)) as a function of m2 for j= 0 (upper triangles), j= 0:05 (circles),
j= 0:1 (lower triangles), j= 0:2 (squares) and j= 0:5 (diamonds). The calculations have been done with 500,000 data
points from the solution of system (4.1), and taking n = 5000 randomly selected state vectors for the averaging process
of r. m1 = 25 for j6 0:1. m1 = 15 for j¿0:1. (b) MFNN parameter r as a function of j for a 5xed m2 = 35, and the
other parameters as above.

At larger couplings, however, two diJerent dynamical regimes can be isolated. This 5rst corre-
sponds to the appearance of GS (0:15¡j), where a plateau in the Lyapunov dimension around D �
7:2–7.5 sets in for 0:15¡j¡0:6, thus indicating that GS is initially realized in a high-dimensional
chaotic state. Correspondingly, the number of positive Lyapunov exponents does not change in the
range 0:15¡j¡0:6. A second regime is encountered for 0:6¡j. Here, a sharp transition in the
Lyapunov dimension is found, leading to the stabilization of a 5nal periodic state. It is important
to remark that such a transition corresponds to a sudden change in the Lyapunov spectrum, wherein
all residual positive Lyapunov exponents suddenly jump to negative values at once (Fig. 4.3(b)).
This phenomenon constitutes a remarkable diJerence with the synchronization features studied for
structurally equivalent systems.
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Fig. 4.3. From Ref. [20]. (a) Kaplan–Yorke dimension of Eq. (4.1) as a function of the coupling strength j. (b) Number
of positive exponents in the Lyapunov spectrum vs. j. (c) Largest 10 exponents in the Lyapunov spectrum vs. j. In all
cases the calculations have been performed over a time \t=1; 000; 000, corresponding to 10,000 delay units of the system
with larger delay. The structural collapse at j � 0:6 is marked by a sharp transition in the Kaplan–Yorke dimension (a)
and by the fact that many positive Lyapunov exponents goes to negative value at once (c).

In order to further con5rm these 5ndings, one can calculate the 10 largest Lyapunov exponents in
the spectrum of Eqs. (4.1) as functions of the coupling parameter j (Fig. 4.3(c)). The calculations
here reported have been performed over a time \t = 1; 000; 000, corresponding to 10,000 delay units
of the system with larger delay.
If one focuses on the transition from a hyper-chaotic state to a periodic orbit near j ≈ 0:6, an

intermittent behavior is found, that is the system switches in time between two qualitative diJerent
types of dynamics: a motion close to a periodic orbit and a vastly irregular motion far away from
it. A similar desynchronization scenario was characterized as on–oJ intermittency in the case of
identical DDS [136].
We conclude this section by pointing out that this phenomenon is relevant insofar as the stabiliza-

tion process of a periodic synchronized motion is here a consequence of a suSciently large coupling
strength between the two systems, but it is not generated by external perturbations, as in the case
of the usual chaos control theory [140,141].

5. Noise-induced synchronization of chaotic systems

In the 5rst four sections we have presented a review of synchronization behavior of two coupled
chaotic systems. In this section, we consider the situation that two chaotic systems are not coupled
directly or only weakly coupled, but subject to a common 8uctuating driving signal which is assumed
to be noise in many contexts.
Counterintuitive eJects of noise in nonlinear systems have been a subject of great interest in the

context of stochastic resonance [142–144], doubly stochastic resonance [145,146], and coherence res-
onance [147–150]. With stochastic resonance, noise can optimize a system’s response to an external
signal, while with coherence resonance, pure noise can generate the most coherent motion in the
system.
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The circumstance that diJerent systems are not coupled or only weakly coupled but subjected to
a common random forcing is of great relevance in biology, especially in neuroscience or ecology.
In neural systems, diJerent neurons commonly connected to another group of neurons, receive a
common input signal which often approaches a Gaussian distribution as a result of integration of
many independent synaptic currents [151]. We would emphasize the experimental observation of the
spiking behavior of animal neocortical neurons in response to external stimulus. When the stimulus is
a constant input current, the neurons generate diJerent spike sequences in repeated experiments with
the same driving signal. Remarkably, when an amount of Gaussian noise is added to the constant
input to mimic the synaptic input in actual neural systems, the neurons produce repetitive spike
sequences in repeated experiments with the same 8uctuating driving signal. This reliability of spike
timing is of signi5cance for understanding signal encoding by spike timing of neurons. In ecology,
food webs [152,153] and forest ecosystems [154] over a large geographical region are aJected by
similar environmental 8uctuations. Actually, observations have shown synchronous oscillation of
populations [152–154], and the common environmental 8uctuations may play an important role in
this collective behavior in ecology. It is important to emphasize that, in these systems, both the
coupling and the common random forcing are often rather weak among the elements which are
generically nonidentical.
However, investigation of noise-induced synchronization of chaotic systems has been a subject

of long-standing debates. This section is devoted to review the previous debates and to clarify this
controversy. We will also extend the study of noise-induced synchronization of identical chaotic
systems to noise-induced PS in nonidentical systems. Finally, we discuss noise-enhanced PS in
weakly coupled chaotic oscillators.

5.1. Noise-induced complete synchronization of identical chaotic oscillators

Synchronization of nonlinear systems coupled only by a common random force has drawn consid-
erable attention. Firstly, it was shown that noise can induce synchronization in periodic oscillations
[155–157]. More interesting, the phenomenon of noise-induced order was reported on the chaotic
BZ map which is directly connected to the Belousov–Zhabotinsky chemical reaction [158]. There,
a small amount of noise may change a chaotic trajectory of the system into a state similar to a
periodic orbit smeared with noise [158], which makes the largest Lyapunov exponent (!1) negative,
and leads to a slower decay of correlations and an improvement of the state predictability [159,160].
A negative largest Lyapunov exponent means that in an ensemble of systems with identical laws of
motion and common noise, such as the motion of 8oating particles on a surface of incompressible
8uid [52], the states in the phase space shrink into a single point [52,161], i.e. noise induces CS
in chaotic systems. Near the transition point of the Lyapunov exponent, separation of trajectories
exhibits very intermittent behavior [52], and the probability density of the separation satis5es a scal-
ing law [161]. This intermittent behavior has been shown [106,162,163] to be on–oJ intermittency
[164].
The eJect of common noise on CS of identical chaotic systems was reconsidered [165]. In par-

ticular, Ref. [165] studied the logistic map

xn+1 = 4xn(1− xn) + ' (5.1)
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with the noise ' uniformly distributed in [ − W;W ]. ' is chosen such that xn+1 ∈ (0; 1), otherwise
it is discarded and a new ' is chosen. It was claimed in Ref. [165] that synchronization of logis-
tic maps with common noise ' occurs when W¿Wc = 0:5. Ref. [165] also examined the Lorenz
system

ẋ = �(y − x);

ẏ = �x − y − xz;

ż =−bz + xy (5.2)

with noise acting on the y variable which now iterates as

y(t +Wt) = y(t) + [�x(t)− y(t)− x(t)z(t)]Wt +W'
√
Wt :

The parameters are �= 10, �= 28 and b= 8=3, and '∈ (0; 1) is uniformly distributed biased noise.
Synchronization was observed for W¿Wc � 2=3, while it does not occur for symmetric noise where
' is replaced by ('− 0:5) [165].
These results have spurred a long-standing dispute on the general conclusion of [165] that strong-

enough noise is able to synchronize chaotic systems. Firstly, Pikovsky [166] pointed out that the
largest Lyapunov exponent of the noisy logistic map is positive which is in contradiction to the
criterion of negative largest Lyapunov exponent for synchronization [52,161]. The synchronization
observed in [165] is actually an artifact of 5nite precision in numerical simulations [166,167]. Several
other authors, on the other hand, restudied the problem by examining the properties of the noise
applied to the systems. For the noisy logistic map, the noise is state-dependent and not symmetric
[168], but has a negative mean value, i.e. it is biased [169], and it is this nonzero mean that plays an
important role in synchronization and a zero-mean noise cannot lead to synchronization [169]. For
the Lorenz system, synchronization was observed for uniform noise in [0; W ] with large enough W
values, but not for unbiased one [165]. The largest Lyapunov exponent of the noisy Lorenz system is
the same as that of the system driven constantly only by the mean value W=2 of the noise, indicating
that the bias of the noise plays the crucial role in synchronization [168,170]. Recently, Sanchez et
al. [171] analyzed synchronization of chaotic systems by noise in an experiment with Chua’s circuit,
drawing the general conclusion based on previous results [165–169] that synchronization might be
achieved only by a biased noise, but not by an unbiased one, and synchronization is only a result of
noise-induced order because the biased noise drives the system into a noise-smeared periodic orbit,
similar as in [158].
However, this conclusion has stimulated further investigations. Ref. [172] showed that symmetric

white noise can indeed induce synchronization in some chaotic maps, which are chaotic models of
coupled neurons [173] and which have as an important ingredient signi5cant contraction regions,
i.e. regions where |f′(x)|¡1 (Fig. 5.1). Synchronization induced by unbiased noise has been also
reported in other maps with similar exponential tails [172,174], as well as in the Lorenz system
with a much larger intensity of unbiased noise [174]. In fact, the nonzero mean value of noise
can be separated and viewed as an additional parameter which may move the system into another
dynamical regime. When the dynamics is shifted to a periodic regime by this parameter, the symmet-
ric noise component acts to smear out the periodic orbit, while it may leave the largest Lyapunov
exponent negative. In this case, synchronization of two identical systems in8uenced by common
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Fig. 5.1. (a) Logistic map f(x) = 4x(1 − x) where common noise does not induce synchronization. (b) A chaotic map
f(x) = tanh(A1x)− B tanh(A2x) with A1 = 20, A2 = 2 and B=1:5. Noise can easily induce synchronization in this system
due to large contraction regions where |f′(x)|¡1.

noise is a trivial result of noise-induced order. Considering the system with only a constant bias of
noise as a new system which can still be chaotic, the controversy can be focused to the question
whether unbiased noise can induce synchronization in originally chaotic systems. The reason has not
been clearly addressed, although there are numerical and experimental examples of noise-induced
synchronization.
To clarify the controversy, Ref. [175] have carried out a comparison study of noise-induced

synchronization between the REossler and the Lorenz systems.
An individual noisy REossler system reads

ẋ =−!y − z;

ẏ = !x + 0:15y + D0(t);

ż = 0:4 + z(x − 8:5) (5.3)

with ! = 0:97. Again, the Lorenz system is the same as in Eq. (5.2), but with a noise term D0(t)
added to the y variable. The parameters � = 10, �= 28 and b= 8=3 are the standard ones and are
the same as in [165,174]. 0(t) is a Gaussian noise with 〈0(t)0(t − �)〉= :(�).
To avoid numerical artifacts, the largest Lyapunov exponent !1 of the noisy system is calculated

as a function of the noise intensity. Lyapunov exponents of noisy dynamical systems are well
de5ned [176] similar to the deterministic case. Although Lyapunov exponents in stochastic systems
generally no longer refer to the Kolmogorov–Sinai entropy, and thus are not a proper measure of
the complexity of the systems [177,178], by de5nition, they naturally characterize synchronization
between systems with common noise [161,172,174,176].
To measure synchronization directly, the average distance as a synchronization error 〈|x1 − x2|〉

between the two identical systems with common noise is also computed, with averaging over time
and noise realizations. The results of !1 and 〈|x1 − x2|〉 for the REossler system and the Lorenz
system are shown in Fig. 5.2. In the REossler system, !1 keeps positive till the systems become
unstable for D¿4. Complete synchronization is never observed here. This behavior is similar if
the noise is applied to the x variable, or to both x and y variables. Noise is not applied to the
z variable, because rather small noise already makes the system then unstable. However, in the
Lorenz system, !1 becomes negative for D¿33:3, and two identical Lorenz systems with common
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Fig. 5.3. Trajectories in the phase space of the Lorenz system at diJerent noise intensities. The dotted background shows
the contraction region in the plane y = 0.

noise achieve CS, as is further illustrated by a vanishing synchronization error after the transition
point.
It is important to note that, in the Lorenz system, even for rather strong noise, the basic “butter8y”

structure is preserved (Fig. 5.3). The systems explore a larger region of the phase space with
increasing noise intensity D. In the CS regime D¿33:3, the trajectory is much more complex than a
smeared periodic orbit and is quite diJerent from the external noise. Since now Lyapunov exponents
are no longer a proper measure of complexity of the systems [177,178], common noise-induced
synchronization is not necessarily linked to noise-induced order, as claimed in Ref. [171].
Why is there a transition to CS in the Lorenz system but not in the REossler system? In two

systems ẋ=f(x) +D0 and ẏ=f(y) +D0 (x; y∈Rn) with a common noise, small initial diJerence
:x = y − x evolves according to the linearized dynamics

:ẋ = Df(x):x ;

where Df(x) stands for the Jacobian matrix. This linearized equation is the same as in the noise-free
case (D = 0) where the system is chaotic, i.e. the maximal Lyapunov exponent

!1 = lim
T→∞

1
T
ln

|:x|
|:x0|
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is positive. In the presence of noise, however, the trajectory x is diJerent from that in the noise-free
system, and may explore some regions in the phase space which are unreached by the original chaotic
system. For CS to occur, !1 should become negative, which is possible only when there exists a
contraction region where all the n eigenvalues of the Jacobian matrix Df(x) have a negative real
part, i.e. Re(Gi)¡0 (i = 1; : : : ; n) and nearby trajectories converge to each other.
In the Lorenz system with the parameters considered here, the origin (0; 0; 0) is a saddle point

embedded in the chaotic attractor. The chaotic trajectories leaving the neighborhood of this saddle
point will come back to its neighborhood. Due to this homoclinic return of chaotic orbits, there
exists a large contraction region in the z direction, close to the stable manifold of the saddle point
(see Fig. 5.3). In the presence of noise, the system trajectories do not come very close to this
saddle point, but explore deep into the contraction region, which changes the competition between
contraction and expansion. When the contraction dominates over the expansion, the largest Lyapunov
exponent becomes negative and CS occurs.
In the REossler system, the trajectories spiral outwards following the guidance of the two-dimensional

unstable manifold of the focus and are fold back by the nonlinearity. A contraction region with all
three Re(Gi)¡0 does exist, but the contraction is very weak because the largest Re(Gi) is close to
zero. In addition, in the presence of noise the system still spends only a small portion of time in
the contraction region. The contraction is not suScient to induce CS. There are also regions in the
phase space where all Re(Gi)¿0, and strong enough noise (D¿4) makes the system access to such
regions and breaks the system down easily.
This clari5es the controversy on the mechanism of noise-induced complete synchronization of

chaotic systems. A signi5cant contraction region plays a decisive role, as in one-dimensional chaotic
maps [172]. Noise may change the balance between contraction or expansion, and synchronization
occurs when contraction is dominating. Whether the noise is biased or unbiased is not the key
point. If there does not exist a contraction region, CS cannot occur with any additive common
driving signal. Noise-induced synchronization may be a result of noise-induced order, but they are
not necessarily linked.
This understanding from the Lorenz system also guides us to observe the phenomenon in other

systems. In general, it is expected that in a system possessing the structure of a saddle point embedded
in a chaotic attractor and homoclinic return of orbits (homoclinic chaos), the generic existence of a
large enough contraction region and sensitivity of the system to noisy perturbation near the saddle
point will result in noise-induced synchronization. Note that such a structure is typical for the spiking
behavior of many neural, chemical and laser systems, and noise-induced synchronization may play
an important functional role there.
This rather general claim has also been veri5ed by other systems. The 5rst one is a Hodgkin–Huxley

model [179] of thermally sensitive neurons, which mimics various types of spike train patterns in
electroreceptors from dog5sh and cat5sh, or from facial cold receptors and hypothalamic neurons of
the rat [180]. The model equations read

CM
dV
dt

=−Il − Id − Ir − Isd − Isr + D0(t) ;

dar

dt
=

*(T )(ar∞ − ar)
�r

;
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Fig. 5.4. Noise-induced complete synchronization of a Hodgkin–Huxley model (Eq. (5.4)) of thermally sensitive neurons.

dasd

dt
=

*(T )(asd∞ − asd)
�sd

;

dasr

dt
=

*(T )(−'Isd − -asr)
�sr

(5.4)

with

Id = �(T )gdad∞(V − Vd)

and

Ik = �(T )gkak(V − Vk) (k = r; sd) ;

where

ak∞ = [1 + exp(−sk(V − V0k))]−1

and

�(T ) = A(T−T0)=10
1 ; *(T ) = A(T−T0)=10

2 :

Here V is the membrane potential, and Il is the leakage current; Id and Ir are fast currents rep-
resenting Na and K channels. With this model, the classical Hodgkin–Huxley (HH) model [181],
on the one hand, has been simpli5ed, but on the other hand, has been extended by two additional
slow currents Isd and Isr according to the experimental 5ndings of spike-independent oscillations
[182]. ak is the activation variable, and �(T ) and *(T ) are temperature-dependent scaling fac-
tors. More detailed description of the model, its parameters, such as CM ; gk ; �k ; : : : ; and comparison
with the experimentally observed temperature dependence of spike train patterns can be found in
Ref. [180].
It has been shown that this system exhibits a homoclinic bifurcation, where the interspike interval

becomes very long, when the control parameter temperature T is varied [183]. A saddle-focus is
embedded in the chaotic attractor so that chaotic trajectory has very close recurrence to the neigh-
borhood of the saddle point, similar to the situation in the Lorenz system. A large contraction region
exists generically in the phase space due to this structure, and as expected, a common noise 0(t)
can induce CS of spike trains of two identical neuron, as illustrated in Fig. 5.4. It is not necessary
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that the neuron is close to the homoclinic bifurcation for synchronization to occur. Noise-induced
synchronous spiking has been found in a large parameter space. The mechanism presented here for
the realistic neuron model thus interprets the experimental observations of repetitive spiking in Ref.
[151] and brings a new understanding on neuron encoding. Very similar noise-induced CS of spike
trains has also been observed in homoclinic chaotic lasers [30], both numerically and experimentally.

5.2. Noise-induced phase synchronization of nonidentical chaotic systems

It is interesting to study whether noise can also induce weaker degrees of synchronization, espe-
cially phase synchronization, in particular in situations when it is not strong enough or not able to
induce complete synchronization.
In Section 3, it has been shown that before the transition to almost CS, there is in several

oscillatory systems the regime of PS associated with the transition of a zero Lyapunov exponent to
negative values. As discussed in Section 3, in time continuous autonomous chaotic systems ẋ=f(x)
(f :Rn → Rn), there is a zero Lyapunov exponent !2 corresponding to perturbations to the motion
along the trajectory, which in phase coherent chaotic systems, can be connected to the dynamics of
phases. In such a system subjected to weak noise, ẋ = f(x) + 0, most time it is |f(x)|�|0| and
one can also roughly speak of a motion along the trajectory and connect the original zero Lyapunov
exponent to it and link it to the phase dynamics. Numerical results in the following show that !2
becomes negative for strong enough noise, and in parallel, the phases of the two slightly nonidentical
systems coupled only by common noise become statistically correlated.
To study PS due to noise, Ref. [175] considers two systems with a small parameter mismatch;

particularly, !1 = 0:97 and !2 = 0:99 in the REossler system equation (5.3) and �1 = 10, �1 = 28 and
�2 = 10:2, �2 = 28:5 in the Lorenz system equation (5.2). This slight parameter diJerence does not
change considerably the Lyapunov exponent spectra of the systems.
In noisy chaotic systems, the phase of the dynamics is no longer coherent, i.e. a monotonically

increasing function of time. Nevertheless, a phase variable can be de5ned as in the deterministic
system (Section 3), e.g., * = arctan (v=u). Here u = x − x0 and v = y − y0 for the REossler system,
and u=

√
x2 + y2 −√

x20 + y2
0 and v = z − z0 in the Lorenz system. (x0; y0; z0) are the coordinates

of the unstable focus point of the systems.
In such stochastic systems, it is impossible to observe perfect synchronization of the phases *1

and *2 of the two nonidentical systems, i.e., |*1 − *2|¡const., because the phases are locked only
for some period of time, interrupted by noise-induced phase slips, even though the phases are locked
perfectly in the absence of noise, see Section 3. An approach to study PS behavior in stochastic
systems is to compute the distribution of cyclic phase diJerence on [ − 1; 1] [21,22]. A peak in
the distribution exhibits that there is a preferred phase diJerence between the systems, which is
an indication of PS between the noisy complex systems, i.e. PS is interpreted in a statistical sense
[184].
Without noise the two nonidentical REossler systems are not phase synchronized and the phase

decreases almost monotonously (Fig. 5.5(a), D = 0). Hence, the distribution of the cyclic phase
diJerences on [− 1; 1] is very close to a uniform one (Fig. 5.5(b)). While for strong enough noise,
where !2¡0, one observes many plateaus in the phase diJerence, i.e. many phase-locking epochs
(Fig. 5.5(a), D=3:0), and this is re8ected by a pronounced peak around W*=0 in the distribution
of cyclic phase diJerence (Fig. 5.5(c)); this exhibits a noise-induced phase synchronization. For D
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close to the transition of !2, the peak is not as pronounced and is not located around W*=0. Similar
properties are observed in the Lorenz system.
To measure the degree of noise-induced phase synchronization, Ref. [175] calculates the mutual

information between the cyclic phase dynamics (on [− 1; 1]) of the two systems,

M1 =
∑
i; j

p(i; j) ln
p(i; j)

p1(i)p2(j)
; (5.5)

where p1(i) and p2(j) are the probabilities when the phases *1 and *2 are in the ith and jth bins,
respectively, and p(i; j) is the joint probability that *1 is in the ith bin and *2 in the jth bin.
The number of bins of [ − 1; 1] in the simulations is N = 100. To take into account the change
of the individual distributions p1 and p2 with increasing noise intensity, the mutual information is
normalized into [0; 1] as M =2M1=(S1 + S2), where Sk =−∑

i pk(i) lnpk(i) is the Shannon entropy.
The results of mutual information M as a function of noise intensity are shown along with !2 in

Fig. 5.6 for both the REossler and the Lorenz system. Due to the incoherence of the phases, an exact
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correspondence between the transition of !2 and PS would not be expected. Nevertheless, when !2
becomes appreciably negative, M increases rapidly, indicating an increasing degree of PS. Unlike
PS in coupled deterministic chaotic systems or periodically driven chaotic systems shown in Section
3 (where the phase diJerences are bounded and no phase slips occur after the transition, while just
before the transition phase-locking is interrupted by intermittent phase slips), in the noise-induced
PS, phase-locking epochs show up only after the transition of !2 to appreciably negative values, but
no pronounced phase-locking is seen shortly after the transition point. Phase-locking epochs occur
more frequently, when !2 becomes more negative.
It is important to stress that noise-induced PS is observed in many perturbation con5gurations

both in the REossler and the Lorenz systems.

5.3. Noise-enhanced phase synchronization in weakly coupled chaotic oscillators

In the above sections, we have considered the case where the chaotic oscillators are not coupled
but linked only by a common noise. In reality, such as in neuroscience or electrochemical oscillators,
systems are often weakly coupled besides the common random forcing. It is interesting to study the
interplay between weak coupling and common noise.
In this context Ref. [185] investigates two mutually coupled chaotic REossler oscillators in8uenced

by a common noise:

ẋ1;2 =−!1;2y1;2 − z1;2 + C(x2;1 − x1;2) ; (5.6)

ẏ 1;2 = !1;2x1;2 + 0:15y1;2 + D0(t) ; (5.7)

ż1;2 = 0:4 + (x1;2 − 8:5)z1;2 : (5.8)

Here !1 = 0:97 and !2 = 0:99. Without noise, the two oscillators achieve PS when the coupling
strength C¿CPS =0:0208, where CPS is the transition point to PS (Section 3). In the weak coupling
region C¡CPS, the phases are not yet synchronized. When C approaches CPS, appreciable PS epochs
can be observed between phase slips, and accordingly, there is a small peak in the distribution of
the cyclic phase diJerences.
Ref. [185] analyzes 5rst the dynamics shortly before the onset of PS, as shown in Fig. 5.7(a)

for C = 0:0205. Without a common noise (D = 0), the phase diJerence W* = *1 − *2 decreases



S. Boccaletti et al. / Physics Reports 366 (2002) 1–101 63

continuously. But there are many epochs of phase synchronization interrupted by phase slips; and
typically the phase synchronization epochs last for about 300 cycles of oscillations. Adding a proper
amount of common noise to the two oscillators (e.g. D = 0:1) can prolong remarkably the duration
of the synchronization epochs: the two oscillators maintain phase synchronization for a period of
about 3000 cycles of oscillations. However, for stronger noise (e.g. D=0:3), phase slips occur more
frequently again.
To characterize this phenomenon of noise-enhanced phase synchronization, Ref. [185] focuses on

the duration � of the phase synchronization epochs. � can be estimated reliably for C close to CPS

using a threshold test of moving average of the frequency diJerence between the two oscillators. As
indicated in Fig. 5.7(a), those very long epochs make the distribution of � strongly asymmetrical
around the mean value 〈�〉. To manifest those very long epochs which essentially dominate the
synchronization behavior of the systems, the deviation �2� = 〈(�− 〈�〉)2〉 is computed separately for
�¡〈�〉 and �¿〈�〉, which is a good indication for an asymmetrical distribution, especially for large
�. It is found that the average duration 〈�〉 increases with the noise intensity D, reaches a maximal
value and decreases for larger D for all coupling strengths analyzed (Fig. 5.7(b)). Thus there is
an optimal amount of noise which enhances PS most signi5cantly. Such a resonant-like behavior
is typical in the interplay between noise and nonlinearity in dynamical systems [148–150,186,187].
In this case, the competition between noise-induced phase incoherence and common noise-enhanced
phase synchronization underlies the reason for this resonant-like behavior. In the plot for C=0:0205
(Fig. 5.7), the error bar corresponding to asymmetrical deviation �� shows clearly that common
noise induces very long synchronization epochs. This behavior is similar for other coupling strengths
too.
It should be pointed out that common noise enhances PS even though the coupling is rather weak.

In those cases, in the absence of noise, PS epochs last only for short time and may not be estimated
reliably. But enhanced PS can be detected by a higher peak in the distribution of the cyclic phase
diJerence [184]. A measure [21,22] of the sharpness of the peak shows a similar behavior: with
increasing noise intensity D, the PS degree increases till too strong noise makes the oscillations rather
incoherent. The optimal noise intensity moves to smaller values when C approaches the threshold
CPS. Beyond this threshold, in general, noise acts to degrade PS by introducing phase slips. In the
limit of zero coupling C=0, the common noise with an intensity considered here has no discernible
eJects on PS by itself (Fig. 5.6). On the other hand, noise may induce intermittent phase slips after
the transition point.
Noise-induced PS has also been studied in bistable systems [188] and in excitable media [149,189].

A series of transitions from weak to strong degree of synchronization, similar to that in the coupled
chaotic oscillators discussed in the Section 3, has been demonstrated in coupled noisy excitable
systems [190].

6. Synchronization in extended systems

6.1. Cluster synchronization in ensembles of coupled identical systems

Synchronization eJects in large populations of coupled chaotic dynamical units has also become
a subject of active investigations [15,191,192].
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When passing to space extended systems, a 5rst approach consists in connecting a set of con-
centrated chaotic systems by means of a given coupling (local or global) between the individu-
als constituting the set. Space–time chaos synchronization for this kind of systems has been stud-
ied for populations of coupled dynamical systems [108], for systems formed by globally coupled
Hamiltonian or bistable elements [15], for neural networks [193], for discrete-time maps with mean
5eld global coupling [194,195], along with many other situations that will be summarized in the
following.
Collective phenomena in networks of coupled periodic oscillators has been intensively studied

in the past two decades [72] and still attract a strong interest of many investigators [90,196–202].
Such models have been used for the description of many physical [203–208], biological [209–211]
and chemical [212] problems. Coupled oscillator models are also widely used as general models in
studies of complex dynamics in nonequilibrium media [213,214].

6.2. Global and cluster synchronization in ensembles of coupled identical systems

In large ensembles of coupled identical chaotic as well as periodic elements the main types
of synchronized behavior are global (full) and cluster (partial) synchronization. In this context,
global synchronization can be considered as a generalization of CS. In global synchronization all
elements of an ensemble display the same behavior for any initial conditions. The phenomenon of
cluster synchronization is observed when the ensemble of oscillators splits into groups of mutually
synchronized elements. These phenomena were studied in coupled map lattices [37,215–223], systems
of globally coupled maps [216–219,224–226], locally and globally coupled continuous time chaotic
oscillators [227–230]. In all mentioned cases the problem of cluster synchronization is related to
the existence and stability of invariant manifolds corresponding to the synchronized behaviors in the
considered systems.
Let us begin with an ensemble of N globally coupled chaotic maps [216,225,226,231]

xi(n+ 1) = (1− j)f(xi(n)) + j
N

N∑
j=1

f(xj(n)) : (6.1)

Here, i = 1; : : : ; N is a space index, xi(n) the state variable in discrete time n = 0; 1; : : : ; j is the
coupling parameter and f(x) = ax(1− x) (the logistic map). This system was originally introduced
by Kaneko [216] to study the collective dynamics in large populations of globally coupled identi-
cal chaotic oscillators. The simplest form of a cooperative behavior in such a population is global
synchronization which takes place for relatively large coupling. This synchronous chaotic state re-
sides on a synchronization manifold de5ned by M = {x1 = x2 = · · · = xN−1 = xN}. The dynamics
in M is generated by the uncoupled map (in (6.1) j = 0). Full global synchronization occurs if
M is globally asymptotically stable. As the coupling decreased the regime of global synchroniza-
tion becomes unstable and breaks up into a number of clusters of mutually synchronized units.
For a K-cluster structure, all xi split in K groups such that in each group the variables are the
same:

x1 = x2 = · · ·= xm1 = X1 ; (6.2)

xm1+1 = xm1+2 = · · ·= xm1+m2 = X2 ; (6.3)
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: : : (6.4)

xm1+···+mK−1+1 = · · ·= xN = XK ; (6.5)

where m1; m2; : : : ; mk are the sizes of the clusters. Then the dynamics of the K-cluster structure can
be described by the K-dimensional system for the cluster variables Xl:

Xl(n+ 1) = (1− j)f(Xl(n)) + j
K∑

k=1

pkf(Xk(n)) ; (6.6)

where pl =ml=N is the portion of the elements belonging to the lth cluster. With further increasing
of coupling the regime of turbulent (fully desinchronized) state appears. In [225,226] a more detailed
transition from global to cluster synchronization is presented.
A similar situation takes place in ensembles of coupled continuous time chaotic systems. Following

[192,232,233] let us consider N identical diJusively coupled oscillators with periodic boundary
conditions:

u̇ j = f(uj) + cE(uj+1 − 2uj + uj−1) ; (6.7)

where j = 0; 1; : : : ; N − 1, uj ∈Rn, the function f :Rn → Rn is nonlinear, c is a scalar coupling
parameter, and E=diag(e1; : : : ; en) is a constant diagonal diJusion matrix with elements 06 ei6 1.
The regime of global synchronization corresponds to a spatial homogeneous state u0=u1=· · ·=uN−1,
which de5nes a n-dimensional invariant manifold M . In M the dynamics is governed by the equation
of the uncoupled oscillator ṡ=f(s). The stability of the synchronous state is determined by linearizing
(6.7) about s(t). This leads to

0̇j = Df(s)0j + cE(0j+1 − 20j + 0j−1) ; (6.8)

where 0j = uj − s, Df(s) is the Jacobian of f on s(t). The linear stability equations (6.8) can
be diagonalized by expanding into spatial Fourier modes, 0j = (1=

√
(N ))

∑N−1
k=0 'k exp(−21ijk=N ).

Carrying this out gives

'̇k = [Df(s)− 4c sin2(1k=N )E]'k ; (6.9)

where k = 0; 1; : : : ; N − 1. Solving Eq. (6.9) for a concrete function f(s) and a concrete solution
s(t), one can obtain all Lyapunov exponents which determine the stability of the synchronization
manifold M . In [192,232] it was found that for coupled REossler systems increasing coupling can lead
to destabilizing of the synchronous state. This phenomenon is called a short-wavelength bifurcation.
In addition to global and cluster synchronization in ensembles of identical systems, the phenomena

of antiphase and in-phase–antiphase synchronization were observed [215,223,227,234,235]. These
types of synchronization are de5ned by the existence of stable linear transversal invariant man-
ifolds. Such antiphase synchronization is observed in a system of coupled oscillators where all
corresponding variables of oscillators are equal with opposite sign. In in-phase–antiphase synchro-
nization, one set of the corresponding variables is equal, whereas the other one is equal with opposite
signs.
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6.3. Synchronization phenomena in populations of coupled nonidentical chaotic units

Recently, the study of cooperative behavior in ensembles of chaotic oscillators has become very
attractive. It has been demonstrated that typical phenomena in networks of coupled periodic and
chaotic systems are quite similar [108,192,236–240]. This section is devoted to the description of
the synchronization eJects in arrays of coupled nonidentical chaotic oscillators.
As in the case of small (two-elements) ensembles of coupled chaotic elements, all types of

synchronization can be considered in large (chains and lattices) ensembles. To demonstrate the
typical phenomena in such ensembles, we will focus here on chains of nearest-neighbor diJusively
coupled circle maps (CMs) and REossler oscillators.

6.3.1. Synchronization in a chain of coupled circle maps
Phase synchronization in ensembles of locally coupled chaotic elements was 5rstly studied in

chains of weakly diJusively coupled chaotic REossler oscillators [107] (see next subsection). Many
phenomena already observed in a population of periodic oscillators were found there too, especially
to mention the formation of several clusters of mutually synchronized elements and global synchro-
nization. In the latter case the main eJects can be observed only by using of the phase equations.
In this subsection we present results for chains of coupled circle maps which can be considered as
the discrete in time analog of phase equations which appear in ensembles of coupled continuous in
time limit-cycle oscillators.
As mentioned before, the study of PS eJects requires the existence of equations for the evolution

of phase variables or at least the existence of appropriate de5nitions of phases. There are so far no
unambiguous methods to obtain such equations and de5nitions. But in some cases the topology of the
chaotic attractors allows to de5ne the phases of chaotic oscillators in a rather simple way. In several
cases it is possible to obtain approximate equations which qualitatively describe the dynamics of the
system of coupled elements. These equations are very similar to phase equations usually obtained
for ensembles of coupled limit-cycle oscillators and can be written in the form [7]:

*̇n = !n + F(*n) + d(sin(*n+1 − *n) + sin(*n−1 − *n)); n= 1; : : : ; N ; (6.10)

where *n is the phase variable, !n the natural frequency of a single element, N the number of
elements, F(*n) some nonlinear function that is responsible to the non-uniformity of rotations in
a single element. A good example, where such kind of equations can be used for a qualitative
explanation of PS eJects, is the REossler oscillator in the regime of phase coherent chaotic attractor.
For this attractor, if we choose the projection on the plane (x; y), the phase point rotates around the
origin, and the projection looks like a smeared limit cycle.
Eqs. (6.10) do not account for the amplitude and other variables in8uence on the dynamics of

phases. For uncoupled elements the corresponding equation (in (6.10) d = 0) does not possess a
chaotic behavior. In order to partially avoid such disadvantages of Eq. (6.10) we consider a discrete
analog of Eq. (6.10):

*k+1
n = !n + *k

n − F(*k
n) + d(sin(*k

n+1 − *k
n) + sin(*k

n−1 − *k
n)); n= 1; : : : ; N : (6.11)

Here *k
n is the phase variable at adjacent times k = 1; 2; : : : : The parameter !n characterizes the

partial frequency. The function F(*n) is taken in the following piece-wise linear form F(*n)=c*n=1.
This function is de5ned in the interval [ − 1; 1] and c is the control parameter. In the presented
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treatment the system is subjected to free-end boundary conditions, i.e. *k
0 = *k

1 and *k
N+1 = *k

N . By
such an approach a single element in the chain is a circle map whose dynamics is described in
Section 3.1.5. Because we are interested in the synchronization properties of chaotic elements, we
analyze negative values of c only. So one has to investigate synchronization eJects in a chain of
coupled chaotic CMs [83].
Two criteria to test for m1 :m2 synchronization, where m1;2 are integers, are usually used. m1 :m2

phase synchronization of chaotic rotations between two CMs can be de5ned as phase entrainment
or locking

|m1*k
n − m2*k

n+1|¡Const (6.12)

for all k=1; 2; : : : : A weaker criterion for the analysis of phase synchronization in a chain of coupled
CMs is based on their rotation numbers (3.19), i.e. we test for

m1�n = m2�n+1 : (6.13)

Here �n is the rotation number de5ned as

�n =
1
21

lim
M→∞

*M
n − *1

n

M
; (6.14)

where M is the number of iterations. In the study of synchronization eJects in a chain of coupled
CMs, the ful5llment of the conditions (6.12) and (6.13) for all n = 1; : : : ; N means the existence
of global synchronization. If these conditions are satis5ed only for several neighboring elements, a
regime of cluster synchronization is formed.
We describe the results of numerical simulations with a chain of 50 elements with linear:

!n = !1 + I(n− 1); n= 1; : : : ; N (6.15)

and random distribution of the individual frequencies

!n = !1 + W0n; n= 1; : : : ; N ; (6.16)

where I= const and 0n are uniformly distributed random numbers in the interval [− 0:5; 0:5]. The
rotation number �n is calculated for each CM. We 5nd that analogous to the self-synchronization in
chains of periodic oscillators [201] and chains of chaotic phase coherent REossler oscillators [107],
mutual global synchronization in chains of coupled CMs can appear or vanish in two ways: soft
and hard. The soft transition, i.e. transition without cluster formation, is characterized through a
smooth locking of the rotation numbers and can be observed in chains with a very small frequency
mismatch. But in the hard transition the appearance or disappearance of global synchronization is
accompanied by the existence of cluster synchronization. This hard transition happens in rather long
chains with a relatively large frequency mismatch. There the loss of global synchronization leads
to the appearance of two clusters of elements which rotate at the same rotation number. With a
further increase of the frequency mismatch, the formation of new clusters is typical. The values of
the rotation number for each cluster (except the edge ones) are close to those obtained by averaging
the individual rotation numbers over all the elements forming the cluster. In the soft transition after
the loss of global synchronization most elements of the chain (except, perhaps, the edge ones) rotate
with diJerent rotation numbers. In the case of randomly distributed frequencies, only a hard transition
is possible. For a linear distribution of the individual frequencies the rich spatio-temporal dynamics
of the noncluster (smooth distribution of rotation numbers) (Fig. 6.1(a)) and cluster synchronization
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Fig. 6.1. Hard (a) and soft (b) transitions to global chaotic phase synchronization for a chain of coupled CMs (Eq. (6.11))
with N = 50. The relative rotation numbers �n=�1 for diJerent coupling coeScients d for linear distribution of individual
frequencies for b1 = 0:6, frequency mismatch Wb= 0:002, c =−0:002 (a) and c =−0:4 (b).

structures (Fig. 6.1(b)) is illustrated in Fig. 6.2. In all plots the darker regions mark higher values
of the presented variables. The two left panels show the quantity sin(*k

n), so that the white stripes
correspond to phases ≈ 31=2 and the black stripes to phases ≈ 1=2. The right panel shows the
quantity

sn = sin2
(
*k

n+1 − *k
n

2

)
(6.17)

which characterizes the instantaneous phase diJerence between neighboring oscillators. This yields
that sn = 0 if the phases are equal and sn = 1 if they diJer by 1. The spatio-temporal behavior
of the boundaries between clusters corresponds to the positions where phase slips or defects occur.
These defects are clearly seen as maxima (black regions) of sn. They can follow regularly in time
at certain positions in the chain; this case corresponds to the existence of strong jumps between
clusters (Fig. 6.2(c)). If the cluster structures do not exist or the borders between them are smooth,
then defects appear irregularly in both space and time (Fig. 6.2(d)).
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Fig. 6.2. Space–time plots of the evolution of (a; b) sin(xk*) and sn (Eq. (6.17)) (c; d) by hard (a; c) and soft (b; d)
transitions to global chaotic phase synchronization for a linear distribution of individual frequencies. Gray scale is used,
with minimal values being represented by white and maximal by black. The parameters are N =50, b1 = 0:6, Wb=0:002,
d= 0:39 and c =−0:002 (a; c) resp. c =−0:4 (b; d).

Typical phenomena observed in numerical simulations for coupled chaotic CMs can be explained
in the following way. As we have mentioned before, a chaotic behavior in a single CM takes place
at any negative values of c. It is obvious that the phase evolution at very small c is very similar to
the evolution of phases in the case of regular behavior at c = 0: Then we will consider the chain
of coupled regular CMs and a linear distribution of the partial frequencies !n. In this case system
(6.11) can be rewritten as

*k+1
1 = !1 + *k

1 + d sin(-k
1) ; (6.18)

-k+1
n = I+ -k

n + d(sin -k
n+1 − 2 sin -k

n + sin -k
n−1); n= 1; : : : ; N − 1 (6.19)
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with I = !n+1 − !n, -k
n = *k

n+1 − *k
n and the boundary conditions: -k

0 = -k
N = 0. The stable 5xed

point -k+1
n = -k

n = \-n for each n = 1; : : : ; N − 1 in system (6.19) corresponds to a regime of global
synchronization in the chain. Then the equations for the stationary phase diJerences \-n can be written
as

I+ d(sin \-2 − 2 sin \-1) = 0 ;

I+ d(sin \-n+1 − 2 sin \-n + sin \-n−1) = 0; n= 2; : : : ; N − 2 ;

I+ d(sin \-N − 2 sin \-N−1) = 0 : (6.20)

As follows from [198], the distribution of \-n obtained as a solution of the system (6.20) is

sin \-n =
I
2d

(Nn− n2) : (6.21)

It follows from (6.21) that the system (6.19) has 2N−1 5xed points. As the frequency mismatch I
is increased, the condition for the existence of 5xed points:∣∣∣∣ I2d (Nn− n2)

∣∣∣∣¡1 (6.22)

is violated 5rst for n=N=2 at even N , i.e. for the middle element in the chain. Thus, the condition
for the existence of a 5xed point in the N -element chain is given by the inequality∣∣∣∣WN 2

2d

∣∣∣∣¡1 : (6.23)

As one can easily obtain from Eq. (6.18) by global synchronization, the rotation numbers for all
elements are equal to the rotation number of the middle element �N=2. For I= 8d=N 2, we have the
following value \-N =2 = 1=2. In this case, the stable and unstable 5xed points merge and a rotatory
behavior is born in the phase space of Eq. (6.19). All the elements of the chain are coupled.
Consequently, as the phase diJerence between the middle element and its neighbor increases, the
stationary regimes of global synchronization changes to the regime of oscillations -k

n (except the
middle element) near a certain constant value \-n, where the oscillation amplitude depends on n in
all elements of the chain. The closer the elements are to the ends of the chain, the smaller the
amplitude of the oscillations is. In the case of a long chain, the current values of -k

n are nearly
constant (or constant) for the edge elements, i.e. the regime of synchronization occurs. Thus the
array is divided into two clusters of equal sizes (N=2) that of mutually synchronized with diJerent
rotation numbers. The rotation number value by global synchronization and condition of existence
of global synchronization in system (6.11) at c= 0 are in a good agreement with the results of the
numerical experiments for small negative values c.

6.3.2. Phase synchronization phenomena in a chain of nonidentical R)ossler oscillators
Now, the case of a chain of continuous in time oscillators is treated. To get a deeper insight

in the formation of chaotic PS of coupled elements and underline the similarity of synchronization
phenomena in networks of periodic and chaotic systems, we present results on a chain of nonidentical
REossler oscillators with a nearest-neighbors diJusive coupling [107].
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The model of this chain can be written as a set of ordinary diJerential equations:

ẋn =−!nyn − zn ;

ẏ n = !nxn + ayn + j(yn+1 − 2yn + yn−1) ;

żn = 0:4 + (xn − 8:5)zn : (6.24)

Here n=1; : : : ; N are the numbers the oscillators in the chain and j is the coupling coeScient. The
parameter !n corresponds to the natural frequency of the individual oscillator. Like in the previous
section, we introduce the gradient distribution of natural frequencies !n = !1 + :(n − 1), where
: is the frequency mismatch between neighboring systems. Another variant considered below is a
random distribution of natural frequencies in the range [!1; !1+:(N−1)]. We again assume free-end
boundary conditions:

y0(t) = y1(t); yN+1(t) = yN (t) : (6.25)

Because the REossler system typically has windows of periodic behavior as the parameter ! is
changed, we choose !1 and : in such a way that at least large periodic windows are avoided.
As already discussed, for the REossler system the de5nition of phase for phase coherent attractor

can be introduced in a simple way:

*n = arctan (yn=xn) : (6.26)

The amplitude correspondingly can be de5ned as

An =
√

x2n + y2
n : (6.27)

As the phase of this highly phase-coherent chaotic system is well-de5ned, one can straightforwardly
calculate the phase diJerence between neighboring oscillators *n−*n+1. If the phase diJerence does
not grow with time, but remains bounded, we have a 1 : 1 phase locking. A weaker condition of
synchronization is the coincidence of the averaged partial frequencies de5ned as

3n = 〈*̇n〉= lim
T→∞

*n(T )− *n(0)
T

: (6.28)

We emphasize that the mean frequency of chaotic oscillations 3n can be also calculated as

3n = lim
T→∞ 21

Mn
T

T
; (6.29)

where Mn
T is the number of rotations of the phase point around the origin during time T . This

method can be directly applied to observed time series, when one e.g. takes for Mn
T the number of

maxima of xn(t). For the REossler attractor, estimates (6.28) and (6.29) practically coincide.
The result of numerical simulations performed with chains of 20–50 oscillators is presented for

diJerent values of the parameters :; !1; j. The main calculated quantities are the observed frequencies
3n. Generally, by increasing coupling all the frequencies 3n become equal; that means global PS
sets in. As in the case of coupled periodic oscillators and coupled chaotic circle maps, the regime
of global synchronization in the chain (Eq. (6.24)) can again appear in two ways, depending on the
relatively frequency mismatch :=!1. Below these two scenarios, referred to as the soft and the hard
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Fig. 6.3. Soft transition to global synchronization in a chain of REossler oscillators (6.24). Mean frequencies 3n for diJerent
values of coupling j. The parameters are: N = 20, the frequency mismatch := 2× 10−4 and !1 = 1.

Fig. 6.4. 40 largest Lyapunov exponents !i for the regimes reported in Fig. 6.3.

transitions, are described:
(i) We 5rst consider the case of a relatively small frequency mismatch :=!1�1. Then a soft

transition to global synchronization is observed (Fig. 6.3). In this transition the amplitudes of the
oscillators remain chaotic, which is clearly marked by the spectrum of Lyapunov exponents (Fig. 6.4).
As has been shown in [7], the appearance of PS in a system of two coupled oscillators manifests
itself in the Lyapunov spectrum, namely, one of the zero exponents becomes negative, while the two
largest ones remain positive. For the chain, the N largest Lyapunov exponents remain positive, while
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Fig. 6.5. Hard transition to global synchronization in a chain of REossler oscillators (Eq. (6.24)). Mean frequencies 3n for
diJerent values of coupling j. The parameters are: N = 50, the frequency mismatch := 9× 10−3 and !1 = 1:

only one zero exponent survives, and N − 1 become negative. Then, a high-dimensional (number
of positive Lyapunov exponents is equal to the number of coupled elements) synchronized chaos is
observed.
(ii) For a relatively large frequency mismatch :=!1 the transition to global synchronization via

clustered states occurs, i.e. a hard transition takes place (Fig. 6.5). As a rule, with an increase of
j, the clusters of mutually synchronized oscillators appear rather abruptly. With a further increase
of coupling the width of the clusters grows in parallel, the number of clusters decreases, and,
5nally, only one cluster remains, i.e. global synchronization appears. The behavior of the Lyapunov
spectrum is quite diJerent to the case of soft transition. As the coupling j grows, the number of
positive Lyapunov exponents decreases. Before any synchronization eJects are seen, only a few
Lyapunov exponents are positive (see Fig. 6.6). The cluster formation is clearly visible in a space–
time diagram (Fig. 6.7). In all panels a gray scale is used with minimal values being represented by
white and maximal by black. The left panel shows the quantity sin(*n)=yn=An (see Eqs. (6.26) and
(6.27)). The right panel shows the amplitudes of the oscillators. To characterize the instantaneous
phase diJerence between neighboring oscillators, the quantity

sn = sin2
(
*n+1(t)− *n(t)

2

)
(6.30)

is plotted in the center panel. The defects, which are clearly seen as maxima (black regions) of
sn and minima (white regions) of the local amplitude, appear regularly at certain positions on the
chain. In this case the border between the clusters is sharp (see Fig. 6.7). Obviously, the frequency
diJerence between the clusters (beat frequency) is equal to the frequency of the defects appearance.
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Fig. 6.6. 70 largest Lyapunov exponents !i for the regimes reported in Fig. 6.5.

Let us brie8y describe PS eJects occurring in a chain with randomly distributed natural frequencies.
As in the case of linear increasing of frequencies, the regime of global synchronization arises via
the formation of clusters (hard transition) (Fig. 6.8). The essential diJerence is that for the same
mismatch between the largest and the smallest partial frequencies !n, global synchronization appears
for considerably lower values of coupling than in the case of a linear distribution. Qualitatively, this
can be explained as follows. For the case of linearly distributed frequencies, the left neighbor of
some element is in average behind in phase, and the right neighbor is respectively ahead. Hence
they “pull” the oscillator in diJerent directions, and in this sense their actions are compensated. For
the random case it is possible that both neighbors are behind (or ahead) in phase, and respectively
both speed the element down (or up). As a result, their frequencies tend to each other, and these
elements form a synchronous cluster. Such clusters can arise in arbitrary places in the chain and
coexist with the oscillators that belong to no cluster. With the increase of coupling the clusters are
5rstly formed at the location of elements with a smaller frequency mismatch. The eJect of nonlocal
synchronization [241,242], where an oscillator or a cluster of oscillators is synchronized not to a
nearest oscillator or clusters of oscillators, but to a next-to-the-nearest-neighbor oscillator or cluster.
The presented PS eJects in chains of coupled chaotic elements support the idea that PS is a

universal phenomenon of coupled chaotic systems and is similar to synchronization in networks of
periodic oscillators. Recently, the limits for the appearance of collective phase-locked states in a
chain of unidirectionally coupled chaotic REossler oscillator has been investigated [243] and it has
been pointed out that not always phase synchronized states can be produced without at least partial
correlation in the chaotic amplitudes of the oscillators.

6.4. Synchronization in continuous extended systems

In this section we will go further in the analysis of continuous space–time systems, i.e.
systems modeled by partial diJerential equations. This problem has been addressed only recently, and
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Fig. 6.7. Mean frequencies 3n and space–time plots in a chain of 50 coupled REossler oscillators with a frequency mismatch
:=9×10−3 and coupling j=0:18. All plots show a gray-scale representation of corresponding quantities. Minimal values
are represented by white and maximal by black.

therefore only few works are available on this topic. Synchronization of continuous extended 5elds
has been studied in several diJerent situations [16,238,244–247]. Here, we will focus on the case of
two 5elds obeying one-dimensional complex Ginzburg–Landau equations (CGL), both for identical
CGL [17,248] and for nonidentical CGL. In this latter case a comparison is possible between bidi-
rectional coupling [18,249], unidirectional coupling [250] and external forcing [19]. The relevance
of CGL depends on the fact that such an equation is known to model the universal pattern forming
features close to the emergence of an Hopf bifurcation [251], and it has been used to describe many
diJerent situations in laser physics [252], 8uid dynamics [253], chemical turbulence [254], bluJ body
wakes [255], etc.
Let us describe the case of a bidirectional symmetric coupling between two nonidentical one-

dimensional 5elds, ruled by CGL

Ȧ1;2 = A1;2 + (1 + iJ1;2)92xA1;2 − (1 + iC1;2)|A1;2|2A1;2 + j(x)(A2;1 − A1;2) : (6.31)
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Fig. 6.8. Mean frequencies 3n in a chain of REossler oscillators with randomly distributed natural frequencies !n

in the interval [1; 1:05]. The number of elements N = 50, !1 = 1. From bottom to top diJerent coupling strengths
j= 0; 0:01; 0:02; 0:05; 0:2.

Here A1;2(x; t) ≡ �1;2(x; t)e(i 1; 2(x; t)) are two complex 5elds of amplitudes �1;2 and phases  1;2, 92xA1;2

is the second derivative of A1;2 with respect to the space variable 06 x6L, L is the system
extension, J1;2; C1;2 are suitable real control parameters, j(x) is a space distributed coupling factor,
and for the time being we will explicitly consider periodic boundary conditions.
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The synchronization of space–time chaotic states generated by CGL has been the subject of three
recent papers [18,248,249]. Namely, in Ref. [248], it is reported the synchronization of two identical
CGL (J1 = J2; C1 = C2) as a result of a coupling in a 5nite number Nc of controllers, i.e. with a
coupling function given by

j(x) =
Nc∑
i=1

j:(x − xi) ; (6.32)

where xi indicated the position where the ith coupling acts. In the following we will refer to it
as the position of the ith controller. Ref. [248] made use of an adaptive recognition [256] and
control [257–260] method, that was successfully applied also to several other situations, such as
discrimination of deterministic dynamics in biophysical signals [261], control of in5nite dimensional
chaotic dynamics [134,262], targeting of chaos [263], secure communication processes [264], and
5ltering of noise using wavelet techniques [265].
Eq. (6.32) indicates that the coupling acts only in discrete points of the mesh, which were se-

lected to be equally separated in space (xi − xi−1 =0). In fact, perturbing Eq. (6.31) with a coupling
of the kind of (6.32) would not give any eJect: : perturbations in space are not able to modify
a fully developed partial diJerential equation. This is the reason why in Eq. (6.32) : is not a
:-Dirac function, but it will indicate that the coupling at position xi is extended over all the space
extension of the ith controller, which usually corresponds to a single mesh point. It is important
to highlight that this is the case in practical applications, where the controllers have in general
a spatial size, and never act on the system in a point-like region. One possibility is considering
locally space extended controllers, and studying how the extension of the controllers in8uences
synchronization [266,267]. Another possibility is 5xing once forever the mesh precision, thus select-
ing the space extension of the controllers [18,248,249]. In the following we will pursuit this latter
strategy.
Ref. [248] highlights that already a 5nite number of controllers is suScient to warrant CS of two

identical systems, in a robust way as far as a controller is placed approximately each two correlation
lengths (06 20c).
Ref. [18] extended the study to synchronization of two 5elds coming from diJerent dynamics

(J1 
= J2; C1 
= C2), in the case in which the coupling function was extended over all the N mesh
points (j(x) ≡ j). In this latter case a transition is found for large parameter mismatches from
no synchronization to CS mediated by a state where a kind of PS was observed. The intermediate
PS state has been better characterized in a more recent work [250] in the case of a unidirectional
coupling. Space–time Fourier analysis of this state indicated that the synchronization phenomenon
has rather a temporal behavior than a spatial one and the intermediate stage is the one with larger
variations in the mean temporal frequencies of the two systems [249].
A relevant question is whether synchronization between nonidentical systems can be achieved

with a discrete coupling, i.e. a coupling extended only on some of the mesh points. In the following
we will show that this is in fact possible in the limit 06 0c provided that the coupling strength j
increases integrally when the number of controllers decreases.
Let us 5rst discuss the properties of CGL in the absence of the coupling. DiJerent chaotic regimes

can be identi5ed in Eqs. (6.31) in diJerent regions of the parameter space (J; C) [269,270], depending
on the stability properties of the plane wave solutions Aq =

√
1− q2ei(qx+!t) (−16 q6 1, where
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q is the wavenumber in the Fourier space, and ! = −C − (J − C)q2). In particular, for JC¿ − 1
there exists a critical value qc =

√
(1 + JC)=(2(1 + C2) + 1 + JC), such that all plane waves in

the range −qc6 q6 qc are linearly stable. Such plane waves become unstable outside this range
through the so-called Eckhaus instability [268]. Now, qc vanishes as the product JC approaches −1.
Therefore, all plane waves become unstable when crossing from below the so-called Benjamin–Feir
line JC = −1 in the parameter space. Three diJerent turbulent states may be identi5ed above the
Benjamin–Feir line [269,270], namely phase turbulence (PT), amplitude turbulence (AT) or defect
turbulence, and bichaos. In particular PT and AT have received a special attention in the scienti5c
community [271–275].
PT is a state characterized by a chaotic evolution of the phase, whereas the amplitude changes

smoothly, and it is always bounded away from zero. On the contrary, in AT the amplitude dynamics
becomes chaotic, leading to large amplitude oscillations which can occasionally cause the occurrence
of a space–time defect in the point where the amplitude is locally vanishing.
This implies that choosing in (6.31) a suSciently large parameter mismatch between the equations

governing the 5elds A1;2 is tantamount to selecting the uncoupled evolutions of the two 5elds to
be in AT and PT respectively (for the time being J1 = J2 = 2:1, C1 = −1:2 and C2 = −0:83). The
correlation length in the AT case (and for a spatial extension L = 256) is 0c = 5:38 [276]. Let us
now switch on the coupling term on a set of equispaced controllers, and study the synchronization
features emerging in the evolution of the two 5elds, as a function of both the coupling coeScient j
and the controllers number Nc.
To 5x a reference, we 5rst will describe the case of a coupling coeScient that is active for all

mesh points (Nc = N ). All details about the numerical method can be found in Ref. [276]. The
spatial extension is L= 256 and the number of mesh points is N = 2048. The two systems A1;2 are
left uncoupled for a time suScient to wash out the initial transient and to be in a chaotic AT (for
A1) and PT state (for A2). After this initial step, the coupling is switched on.
Fig. 6.9 shows the patterns arising from the space–time representations of �1 (a; c; e; g) and

�2 (b; d; f ; h) for j = 0:05 (a; b), j = 0:14 (c; d), j = 0:2 (e, f), j = 2 (g, h). At small coupling
strengths, the two systems do not synchronize (a; b). At intermediate coupling (Fig. 6.9 (c; d)), the
two systems enter both in a AT state and space–time defects (�2 = 0) are created in the system A2.
For even larger coupling (Fig. 6.9(e, f)), the two system return both in a synchronized PT state, and
defects no longer appear in both systems. If one further increases the coupling (Fig. 6.9(g, h)), the
two states hold in a completely synchronized con5guration, but creation–annihilation of defects in
both systems takes place. A possible explanation is that the two dynamics for A1 and A2 are not
compatible and the combined dynamics of the synchronized state must deal with this incompatibility
by having an “intermittency” type dynamics.
In order to describe the above scenario, we need to introduce some quantitative indicator, such

as the number of defects Ndef that are present in the system. In Fig. 6.10(a), a statistics is made
of Ndef as a function of j. The inset reports the situation for small coupling strength and cor-
responds to the 5rst three cases of Fig. 6.9. The number of defects of A1 is decreasing to zero
when the coupling j is increased. As for A2, its defect number vs. j is not evolving mono-
tonically, but it increases to a maximum value (for j � 0:12 where the number of defects is
equal to the number of defects for A1) and then decreases to reach zero for j � 0:16. However,
a further increase of the coupling generates an increasing of the defect number (e.g. for j = 2,
Ndef = 79).
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Fig. 6.9. From Ref. [276]. Case: Nc=N in Eq. (6.31): Space (horizontal)–time (vertical) plots of the moduli �1 (a; c; e; g)
and �2 (b; d; f ; h). Parameters in Eq. (6.31) are: J1 = J2 = 2:1; C1 =−1:2; C2 =−0:83. Time increases downwards from
500 to 1500 (u.t.). The 5rst 500 time units (not plotted) after coupling has been started are not represented. Note that
the two systems were prepared in two independent chaotic states (AT for A1 and PT for A2). (a) and (b) correspond to
j= 0:05, (c) and (d) to j= 0:14, (e) and (f) to j= 0:2, (g) and (h) to j= 2.

Two other indicators for the synchronization are reported in Fig. 6.10b, namely the average (in
space and time) of the modulus diJerence (solid line)

〈W�〉=
〈 |�1 − �2|

�1 + �2

〉
x;t

(6.33)
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Fig. 6.10. From Ref. [276]. Case: Nc =N in Eq. (6.31): Indicators of synchronization. (a) Total number of defects versus
the coupling strength j for A1 (solid line) and A2 (dashed line). The inset reports the zoom at small j values. (b) The
modulus (solid line) and phase (dashed line) indicators vs. j (see text for de5nition). The modulus indicator has been
multiplied by a factor 7 in order to get the same vertical scale for the two indicators. The inset reports the zoom at small
j values. (c) SYG indicator (see text for de5nition) vs. j (Eq. (6.36)). The inset reports the zoom at small j values. (d)
SYG indicator vs. time (in arbitrary units) for a 5xed coupling strength j= 2. The inset is a zoom from t = 600 to 800.
Parameters are the same as in the caption of Fig. 6.9.

and the same average for the phase diJerence (dashed line)

〈W 〉=
〈 | 1 −  2|
| 1|+ | 2|

〉
x;t

: (6.34)

The inset again reports the situation at small coupling values. The modulus diJerence decreases
much faster than the phase diJerence, as the coupling increases, and therefore one can infer that the
defects 5rst synchronize before having a CS [18].
In Fig. 6.10(c; d) two other indicators are shown, namely

SYG(t; j) = 〈Re(A1 − A2) + Im(A1 − A2)〉x (6.35)

and

SYG(j) = 〈SYG(t; j)〉t ; (6.36)
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Fig. 6.11. From Ref. [276]. Case: Nc = N=5 in Eq. (6.31): Space (horizontal)–time (vertical) plots of the moduli
�1 (a; c; e; g) and �2 (b; d; f ; h). J1 = J2 = 2:1; C1 = −1:2; C2 = −0:83. Time increases downwards from 500 to 1500
(u.t.). Same general stipulations as in the caption of Fig. 6.9. (a) and (b) correspond to j=0:25, (c) and (d) to j=0:70,
(e) and (f) to j= 1, (g) and (h) to j= 10.

which are an hybrid between the phase and modulus diJerence indicators. Fig. 6.10(c) shows
SYG(j). This indicator has the property of being not a monotonous function of j. In particular,
when the number of defect vanishes, a sudden increase in the corresponding value of the SYG indi-
cator is observed. Fig. 6.10(d) reports the temporal evolution of SYG(t; j) at large coupling (j=2),
indicating that the synchronization is not a stable process, and that some kind of intermittency
phenomena occur.
Let us now move to describe the case of a discrete coupling. Fig. 6.11 shows the space–time

plots of �1 (a; c; e; g) and �2 (b; d; f ; h) for Nc = N=5. Notice that in Fig. 6.11 j = 0:25 (a; b); j =
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Fig. 6.12. From Ref. [276]. Case: Nc = N=5 in Eq. (6.31): Same indicators of synchronization as in Fig. 6.10. (a) Total
number of defects vs. the coupling strength j for A1 (solid line) and A2 (dashed line). The inset reports the zoom at
small j values. (b) The modulus (solid line) and phase (dashed line) indicators vs. j. The modulus indicator has been
multiplied by a factor 7 in order to get the same vertical scale. The inset reports the zoom at small j values. (c) SYG
indicator vs. j. The inset reports the zoom at small j values. (d) SYG indicator vs. time (in arbitrary units) for a 5xed
coupling strength j= 2. The inset is a zoom from t = 1100 to 1300. In (a; b; c) j(5) means that we take one controller
each 5ve mesh points. Notice that the corresponding transitions occur for coupling strengths 5ve times larger than in
Fig. 6.10.

0:70 (c; d); j = 1 (e; f ), and j = 10 (g; h) which are exactly 5ve times the coupling strengths used
in Fig. 6.9 for Nc = N . By comparing with Fig. 6.9, it is nearly impossible to distinguish between
the two scenarios of synchronization stages. Fig. 6.12 reports the behavior of the above indicators
in the case Nc =N=5, showing the same succession of events as for discrete synchronization, except
that the coupling strength has to be multiplied by the factor Nc=N .
An ultimate test to show up the limitation of this integral behavior, may be done by de5ning j∗

as the minimum coupling strength for which the number of defects in A1 and A2 vanishes, and by
reporting j∗ vs. 0=0c. The outcome of this test is shown in Fig. 6.13, where the integral behavior is
witnessed by the fact that the results align quasi perfectly on a straight line for 0=0c¡1=3.
Similar approaches, based on local coupling schemes, have been successfully applied for con-

trol and synchronization purposes in coupled Ginzburg–Landau [267] and Kuramoto–Sivashinsky
[266,277] equations.
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Fig. 6.13. From Ref. [276]. j∗ (see text for de5nition) as a function of the ratio 0=0c. The straight line aligning the results
witnesses the existence of an integral behavior for the discrete synchronization in the limit of at least three controllers
per spatial correlation length.

7. Experimental synchronization of chaos

In the last sections, we have shown that when nonlinear dynamical systems are coupled or in8u-
enced by a common driving signal, synchronization can be established among the systems. The type
and the degree of synchronization depend on the coupling strength as well as on the structures of
the systems. When the subsystems are nearly identical and the coupling is strong enough, complete
synchronization may be observed between the states x(t) and y(t) of two coupled system, or with
an appreciable time lag �, as is called lag synchronization. When two diJerent systems are coupled
with suSciently strong coupling strength, generalized synchronization may occur and two systems
establish a functional relationship y(t) =  (x(t)) between their states. Rather weak coupling may
already aJect the time scales of the systems, and two chaotic oscillators may achieve phase locking,
while the amplitude can remain only weakly correlated.
Many laboratory or natural systems are essentially composed of subsystems coupled some

times in a sophisticated manner. Due to the coupling, interdependence between the subsystems
is established and synchronization may set in and play an important functional role in the
system behavior. However, laboratory or natural systems often have the following
features:

(i) They are hardly found fully identical and in many cases, considerable drifting of system pa-
rameters makes the systems rather nonstationary.

(ii) Noise is always present in experimental systems.
(iii) Accurate descriptions of such systems are often very complicated, and simple and tractable

models are often not available, and most likely the only accessible information are a few
recorded time series from diJerent subsystems.
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(iv) While in some experimental systems the coupling can be adjusted to examine how the syn-
chronization behavior changes, in most natural systems there is often no access or it is very
diScult to perform such a control of system parameters.

These features call for special data analysis tools for detecting synchronization behavior in exper-
imental data. In this chapter, we 5rst review several tools for the detection of synchronization or
more generally interdependence of two nonlinear time series. After the summary of the tools, we
discuss synchronization found in experimental and natural systems.

7.1. Data analysis tools for detecting synchronized regimes

While CS can be easily detected by visualizing the diJerence between the two time series, the
identi5cation of other types of synchronization or even weaker interdependence is not straightforward
and requires more sophisticated approaches.
The most well-known method to search interdependence between two time series {xi} and {yi}

sampled with a time step Wt is to calculate the cross correlation function (more generally, considering
a time lag �= lWt)

C(X; Y; �) = 〈[(xi − 〈x〉)(yi−l − 〈y〉)]〉 ; (7.1)

where 〈·〉 stands for average over time. It is important to emphasize that C(X; Y; �) measures only
the linear interdependence between the time series. To measure nonlinear interaction, concepts from
information theory, such as mutual information

I(X; Y ) = H (X ) + H (Y )− H (X; Y ) (7.2)

which is based on the Shannon entropies H (X ) and H (Y ) of both time series and the entropy
H (X; Y ) of the joint probability function, are often applied [129]. In Section 5.3, mutual information
is used to measure the dependence between noisy phases due to a common random forcing. One
should note that such statistical measures basing on the stationary probability distributions p(X ),
p(Y ) and p(X; Y ) are hard to estimate reliably due to nonstationary and limited length of real data.
Many modern methods for the nonlinear analysis of multivariate time series are based on the as-

sumption that deterministic dynamics are responsible for the recorded complex time series [139,278].
The phase space structure of the dynamics then should be able to be unfolded and reconstructed
equivalently in a high enough dimensional embedding space with only a scalar time series according
to Taken’s embedding theorem. Often the vectors in the m dimensional embedding space can be
constructed by the time-delay (e.g. �= lWt) coordinates of the time series as

xi = (xi; xi−l; : : : ; xi−(m−1)l):

For multivariate time series, the embedding parameters m and l can be diJerent and often should be
chosen individually for X and Y . Readers are referred to Refs. [139,278] for detailed discussion on
optimizing these parameters. In a proper embedding space, many methods then have been proposed
to reduce the measurement noise and to compute invariant quantities, such as Lyapunov exponents
!i or dimensions Di. Prediction of the time series can be performed, and local or global models may
be constructed.
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Despite those rather general methods of nonlinear data analysis, special techniques for synchroniza-
tion analysis have been recently developed. In the following we review such methods for generalized
and phase synchronization.

7.1.1. Generalized synchronization
According to Section 3.6, where the occurrence of generalized synchronization has been discussed,

the two (sub)systems are connected by a functional relationship Y =  (X ), i.e. whenever two states
xi and xj are close to each other, the contemporary states yi and yj are also close to each other.
Based on this idea, Ref. [10] proposed the method of mutual false nearest neighbor to detect GS,
which has been mentioned brie8y in Section 4.1.
Actually, the mutual false nearest neighbor method belongs to a variation of a somewhat more

general method proposed in Ref. [123], which considers closeness not only by the nearest neighbor
point, but an ) region in the neighborhood. Ref. [123] introduces the mean conditional dispersion

�XY ()) =


∑

i �=j

‖yi − yj‖2M()− ‖xi − xj‖)
/∑

i �=j

M()− ‖xi − xj‖)


1=2

; (7.3)

where M it the Heaviside function with M(z¿0) = 1 and M(z6 0) = 0. When X and Y are in
generalized synchronization, �XY ()) should decrease with decreasing ), while if they are not related,
�XY ()) is independent of ). With this measure, interdependence may be detected, while linear correla-
tion indicates no signi5cant interrelation. With a similar idea, Ref. [110] developed a set of statistics
for mathematical properties, such as continuity and diJerentiability, of maps between time series in
terms of probabilities or con5dence levels.
In a similar spirit, other variations of the method have been proposed in Ref. [125] and investigated

further in Refs. [126,279]. They included the k nearest neighbors ri(j); (j = 1; : : : ; k) of a state xi
and the k nearest neighbors si(j); (j = 1; : : : ; k) of the state yi. The squared mean distance and the
conditional distance then are given by

R(k)
i (X ) =

1
k

k∑
j=1

(xi − xri( j))2; R(k)
i (X |Y ) = 1

k

k∑
j=1

(xi − xsi( j))2 ;

respectively. With these quantities, a measure for interdependence can be de5ned as

S(k)(X |Y ) = 1
N

N∑
i=1

R(k)
i (X )

R(k)
i (X |Y ) ; (7.4)

which vanishes when X and Y are independent and takes a value close to 1 when generalized
synchronization occurs. Based on the conditional distance, another measure was also proposed similar
to Eq. (7.4), but using the distance of random points, Ri = (N − 1)−1∑

j �=i (xi − xj) instead of that
from the k nearest neighbors for comparison, which reads

H (k)(X |Y ) = 1
N

N∑
i=1

Ri(X )

R(k)
i (X |Y ) : (7.5)

Both measures have proven to be quite useful in real data applications [125] and simple toy models
[126,279].
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There are a few other methods based on predictability of time series. Ref. [113] used mutual
prediction for detecting dynamical interdependence. With the k nearest neighbors ri(j); (j=1; : : : ; k)
of a state xi, the average value after L steps translation can be taken as the prediction of the state
L steps ahead, e.g.

x̂i+L(X ) =
1
k

k∑
j=1

xri( j)+L (7.6)

and the average prediction error is

e(X ) =
1
N

N∑
i=1

|xi+L − x̂i+L(X )| ;

which then is further normalized by the prediction error when taking the mean value of the time
series as the predicted value, i.e.

emean(X ) =
1
N

N∑
i=1

|xi+L − 〈x〉| ;

giving

I(X ) =
e(X )

emean(X )
: (7.7)

I(X ) = 1 indicates that there is no predictability in the time series. Similarly, prediction can be
performed with mutual nearest neighbors si(j), so that

x̂i+L(X |Y ) = 1
k

k∑
j=1

xsi( j)+L

and

e(X |Y ) = 1
N

N∑
i=1

|xi+L − x̂i+L(X |Y )| :

Likewise, the normalized mutual prediction error can be calculated,

I(X |Y ) = e(X |Y )
emean(X )

: (7.8)

When X and Y are in GS, bidirectional mutual prediction can be observed, i.e. I(X |Y )¡1 and
I(Y |X )¡1.
Following the spirit in Ref. [110], Ref. [280] presented a statistics for predictability and func-

tionality in terms of signi5cance level and applied it to detect functional relationships between
experimental time series.
Recently another prediction approach for multivariate time series has been proposed in Ref. [121],

based on the idea of mixed state embedding. It goes as follows: when two nonlinear systems
are coupled, the dynamics of the whole system can be unfolded and reconstructed in a higher



S. Boccaletti et al. / Physics Reports 366 (2002) 1–101 87

dimensional embedding space and predictability of subsystems can be obtained consequently with
nearest neighbors in the mixed state space

pi(m; n) = (xi; xi−l; : : : ; xi−(m−1)l; yi; yi−l; : : : ; yi−(n−1)l) :

With k nearest neighbors ri(j); j = 1; : : : ; k in the mixed state space, the prediction value x̂i+L(X )
of L (L= 1 and k = 1 are considered in Ref. [121]) steps ahead can be computed as in Eq. (7.6),
and the prediction error is given by

e(X;m; n) =
1
N

N∑
i=1

|xi+L − x̂i+L(X )| : (7.9)

Since the nearest neighbors in subspace X or Y may turn out to be false nearest neighbors in the
mixed embedding, the prediction may be improved by a mixed state embedding. Then by examining
the pattern of e(X;m; n) in the (m; n) space, interdependence between X and Y can be detected.
When a functional relationship is identi5ed with the above measures, one may go further to

numerically approximate the function  . A method based on empirical global modeling of time
series [139] was suggested in Ref. [112]. But also other modeling techniques basing e.g. on the
maximal correlation function can be applied [281,282].
Furthermore, the problem of testing whether two chaotic one-dimensional processes reconstructed

from diJerent measured variables can be considered as dynamically equivalent, has been the object
of a recent study, that used experimental data from electronic circuits to illustrate a general technique
[283].

7.1.2. Coupling direction
The next problem in the synchronization analysis is determination of the coupling direction. Due

to diJerent coupling con5gurations, interdependence between X and Y may be asymmetrical. For
example in unidirectional coupling from X to Y , Y is aJected by X , however, X is free and
is not in8uenced by Y . On the contrary, in bidirectional coupling, both are in8uenced by each
other. The correlation function in Eq. (7.1) and mutual information in Eq. (7.2) is symmetric when
exchanging X and Y . Thus both cannot provide information on the coupling direction. All other
measures mentioned above are in general asymmetrical when exchanging X and Y , and could be
useful for detecting coupling asymmetry. Besides the measure in Eq. (7.9) based on the mixed
state embedding with only the assumption that the underlying dynamics are coupled deterministic
nonlinear (chaotic) dynamics, the other measures are based on the further assumption that X and Y
are in GS, so that closeness in the phase space is mapped to each other. Interestingly, in the presence
of GS, this mapping of closeness is mutual, and the degree of asymmetry of these measures often
become lower compared to that in weaker coupling region where synchronization has not been
established [113,125,279]. To make this statement more concrete, let us discuss the measure of
mutual prediction of Eq. (7.8). For unidirectional coupling from X to Y , when the coupling is weak,
there is a predictability of Y from X , but not for the inverse, i.e. I(Y |X )¡1 but I(X |Y ) ≈ 1, and
the driver–response relationship can be detected. When GS sets in, bidirectional mutual prediction
is observed, and unidirectional coupling may not be distinguished from a bidirectional one by this
measure. However, if it is known a priori that the coupling is unidirectional, then bidirectional
mutual predictability implies GS. Note that the measures of the asymmetry degree have a nontrivial
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dependence on other parameters of the data, such as the number N of data points and the number k
of nearest neighbors, and in some cases, the interpretation of this information is diScult [125,279].
A method to detect chaotic drive–response geometry in GS, which is able to display when GS

manifolds exist, and to characterize its nature has also been introduced [284].
An information-theoretic measure, the coarse-grained information rates, has been recently intro-

duced [122] so that interdependence as well as the direction of information 8ow can be detected
in coupled systems. Detecting direction of coupling in interacting oscillators has also been stud-
ied using the phase dynamics [285], which would provide a more promising detection when the
interdependence between amplitudes is weaker than that of phases due to weak interaction.
It should be pointed out that the above described methods are subjected to the same restrictions

as other time series analysis approaches [278], and application to real data is nontrivial due to noise,
nonstationary and limited length of data, especially from biological systems.

7.1.3. Phase synchronization
In the following we turn to discuss detecting interdependence between time series from the view-

point of PS. As shown in Section 3.1, PS sets in at much weaker coupling regime where a strong
connection between the amplitudes has usually not been established and a functional relationship
is usually not expected. In this case, measures based on the assumption of existence of a map-
ping between the time series very likely are not able to detect this weak interdependence with
con5dence.
To detect PS, one looks for correlation between phases of the time series rather than the states

themselves. The 5rst step is then to compute phases from the time series. Section 3.1 has presented
a discussion on this problem. Here we would like to discuss the calculation of the phase from
the viewpoint of 5ltering. For narrow-band signals x(t), e.g. a signal from a system with a proper
rotation around a reference point, the phase can be obtained by means of the analytic signal V (t)
using the Hilbert transform Eq. (3.5), which is equivalent to 5ltering the signal with a 5lter F(t) =
:(t) + (j=1)P(1=t) (P(1=t) means the principal part of 1=t) whose amplitude response is unity, and
whose phase response is a constant 1=2 lag at all frequencies. Writing

V (t) = A(t)ej*(t) = x(t)� F(t) ; (7.10)

where � denotes convolution, the computing of the phase then becomes a problem of 5ltering
the signal. More importantly, one can consider other choices of the 5lter F(t). Note that PS is in
fact a phenomenon of adjusting time scales by weak interaction, and many systems have a broad
distribution of time scales and very possibly not all time scales are synchronized. It is thus interesting
and important to detect synchronization between some particular time scales and the de5nition of
phase with 5ltering becomes very natural. One useful choice can be a Gaussian type of 5lter around
a characteristic frequency 	0 with a width �, e.g. F(t)=(�=

√
21) exp[− j	0t+�2t2=2]. This de5nition

of phase was discussed in Refs. [32,286].
When phases (lifted to the whole real line, i.e. not modulated to [0; 21]) are de5ned and computed

for individual time series, instantaneous frequencies may also be estimated by the derivative of the
polynomial function 5tted to the phases on an interval essentially larger than the characteristic period
of oscillations. With the phase and frequency information, one is ready to detect synchronization.
Due to several eJects, such as borderline of phase synchronization, imperfect synchronization, noise
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and nonstationarity, phases are most likely not locked perfectly, but often interrupted by phase slips.
Ref. [103] presents a few methods to detect phase synchronization of noisy data:
(a) Analysis of phase di<erence. Phase locking epochs may be manifested by horizontal plateaus

in the plot of diJerence W*n;m = n*x − m*y of lifted phases *x and *y. However, due to strong
noisy or chaotic 8uctuations in the signal, clear plateaus may not be easily detectable, and one
should analyze the distribution of the cyclic phase diJerence W9n;m =W*n;mmod 21 over a moving
window, where peaks indicate preferred phase diJerences between the two systems. The degree of
phase synchronization can be measure more quantitatively. Ref. [22] proposes two measures of the
n : m synchronization index. The 5rst one based on the Shannon entropy is de5ned as

�nm = (Smax − S)=Smax ;

where S = −∑N
k=1 pk lnpk is the entropy of the distribution of W9n;m and Smax = lnN (N is the

number of bins) is the entropy of the uniform distribution. Normalized in this way, 06 �nm6 1,
and larger �nm corresponds to a higher degree of phase synchronization. The second index is based
on conditional probability. The intervals of two phases *x and *y, [0; n21] and [0; m21], are divided
into N bins. Then for each bin l, one calculates

�l(tj) =
1
Ml

∑
ei*y(tj)

for all j such that *x(tj) belongs to bin l and Ml is the number of points in this bin. Averaging
�l(tj) over all the N bins gives the synchronization index

!nm =
1
N

N∑
l=1

|�l(tj)| ;

which assumes a value between 0 and 1. A similar quantity can also be de5ned based on the phase
diJerence W9n;m, as

!̃nm = 〈sin2 W9n;m〉+ 〈cos2 W9n;m〉 :

Similar to the conditional probability, mutual information between the distributions of the phases
*x and *y can be calculated as a quantitative measure of the degree of phase synchronization, as
demonstrated in Section 5. Mutual information combined with a test of its statistical signi5cance has
been used to detect PS in noisy systems [287].
(b) Instantaneous frequency ratio. For synchronized systems, this ratio should 8uctuate around

a rational number. Its advantage is that there is no need to search for appropriate values of n and
m. However, due to noise, nonstationarity and short interval of synchronization epochs, this one
may not be able to distinguish synchronization from occasional coincidence of frequencies, and this
method can be used only in addition to the analysis of phase diJerences.
(c) Constructing a synchrogram. This method employs the idea of a phase stroboscope: when

the cyclic phase of one system attains a certain 5xed value - at a moment tk , e.g. *x(tk) = -, the
cyclic phase of the other system is plotted vs. tk to construct a m order synchrogram, i.e.

 m(tk) = *y(tk)mod 21m : (7.11)

In this graphic presentation, n :m synchronization can be visualized by n distinct horizontal lines
and transitions between diJerent ratios of phase locking can be traced, which is extremely useful
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Fig. 7.1. A synchrogram (m= 2) for the cardiorespiratory system of a human subject which shows the transition from a
5-band structure (5 : 2 locking) to a 6-band structure (3 : 1 locking). (From Ref. [103].)

for application to biological data where nonstationarity is often strong [21]. A typical synchrogram
(m= 2) is shown in Fig. 7.1 for the cardiorespiratory system of a human subject which shows the
transition from a 5-band structure (5 : 2 locking) to a 6-band structure (3 : 1 locking).
It has been recently shown that it is also possible to recover a complete synchronization diagram

of the form in Fig. 3.9 from only a very few sets of bivariate data [288]. This technique allows to
estimate the relative strength of the coupling and the parameter mismatch of both subsystems. The
method is most eScient if only points from the nonsynchronized regime are taken for learning the
model.

7.2. Synchronization phenomena in laboratory experiments

CS and GS phenomena in controlled laboratory experiments were demonstrated for electronic cir-
cuits [6,36,48,289], as well as for laser systems [23,290–293]. In driven chaotic systems, diJerent
stages of chaotic synchrony, such as GS, PS and LS have been observed [294,295]. Furthermore,
both CS and GS have been largely demonstrated in experiments that tried to validate secure com-
munication schemes. These experimental setups include digital phase-locked loops [296], modi5ed
Chua’s oscillators [297,298], semiconductor lasers exhibiting chaotic emission on subnanosecond
time scales [299], experimental systems operating at radio frequency [300], and chaotic diode lasers
[301,302].
PS of a chaotic oscillator by an external periodic driving signal has been demonstrated in a

plasma discharge tube paced with a low amplitude wave generator [29,303]. Real-time observation
of synchronization and unsynchronization states is made by taking a stroboscopic sampling at each
period of the pacing signal. In Ref. [30], PS of homoclinic chaos in a CO2 laser with feedback is
achieved by a tiny periodic modulation of a control parameter. DiJerent ratios of phase locking can
be realized in this system. Chaotic oscillation of an electrochemical oscillator can be phase-locked
or even suppressed by external periodic forcing [304].
PS of coupled chaotic oscillators has been demonstrated in electronic circuits, lasers, convective

8ow and others systems. Ref. [305] shows PS in electronic circuits of two unidirectionally chaotic
REossler systems. Ref. [95] observes noise-induced intermittent phase slips and demonstrates that
the scaling of the average duration between successive phase slips obeys that of superpersistent
chaotic transients. Ref. [306] and Ref. [307] have shown frequency-locking and PS between two
mutually coupled chaotic modes of an optically pumped NH3 ring laser, and between the chaotic
oscillation of a single mode ring laser and a chaotic driving signal, respectively. Ref. [308] presents
experimental evidence that the outputs in two unidirectionally coupled semiconductor lasers with an
external cavity, when operating in the regime of low-frequency 8uctuations, are synchronized in their
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dropout events but remain uncorrelated in the process of power recovery. In this case, PS is not
complete, but is achieved between some slow-time scale motions. Similarly, PS between diJerent
frequency components of the oscillator dynamics that are not otherwise apparent are detected in a
linear laser array [32], with phase variables computed by applying a Gaussian 5lter as discussed in
the Section 7.1. DiJerent types of synchronization, including complete, lag and phase synchronization
has been observed in master and slave channels in a dual-wavelength class-B laser with modulated
losses [309]. In Ref. [310], it is shown that due to the eJect of PS, in a rather counterintuitive way,
the repulsive Coulomb interaction can hold a large number of ions into a packet and make them
oscillate synchronously in an electrostatic trap. This absence of dispersion due to PS has application
for mass spectrometry with extremely high resolution.
Evidence of PS in a laboratory experiment was oJered in a thermocapillary driven convective

cell in a time-dependent chaotic regime [25]. The relevance of this experiment relies in the fact
that convective systems have been studied along the last two centuries as paradigmatic examples
of systems yielding a very rich scenario of dynamical phenomena (from strongly ordered states to
strongly disordered states, to turbulence). In particular, the time-dependent regimes of 8uid layers
submitted to a temperature gradient is a subject of current interest. An example is the convection
with free surface (so called BGenard–Marangoni convection). Its relevance is related to the fact that, at
a planetary scale, it plays an important role in geophysical [311,312] or atmospheric [313] energetic
transport. Indeed, the quasi-periodic oceanic circulation patterns, like El Niño current [314,315],
are intimately correlated with the variation of the global pattern of rainfall, and their phases are
considered a good quantitative measure for predicting the future rainfall [316].
Lag synchronization has been observed in electric circuits [104] and lasers [309,317]. In the pres-

ence of large parameter mismatches, lag synchronization characterized by an approximate functional
relation between time-lagged dynamical variables of coupled oscillators, has been experimentally
observed in coupled circuits [318].

7.3. Synchronization phenomena in natural systems

Synchronization phenomena has been largely studied also in nature. The dynamics e.g. of the
human cardiorespiratory system [21], of an extended ecological system [31], of the magnetoen-
cephalographic activity of Parkinsonian patients [22], and of electrosensitive cells of the paddle5sh
[24], have been shown to display synchronization features.
As pointed out in the beginning of this section, CS of natural systems may be exceptional because

the systems are generically heterogeneous and coupling is often complicated and weak. Nonlinear
time series analysis tools have been applied to detect synchronization and coupling (direction) in
natural systems.
One approach is based on the assumption that a rather strong, although may be complicated,

relation may be established between the systems, thus revealing the settings of GS. A possible
method has been discussed already in Section 4. Recently, GS has been studied in the context of
a pair of quasi-two-dimensional channel models, describing the Atlantic and Paci5c sectors of the
Earth’s climate system [319].
Another approach directed to PS of oscillators has been demonstrated to be very successful

in the detection of synchronization and coupling in natural systems. Due to heterogeneity and
relatively complicated and weak coupling, a relation may only be established between phases but
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not in amplitudes of the systems. The phase analysis is completely insensitive to amplitude and
may considerably reduce the error from uncorrelated amplitudes, thus detects successfully a hidden
synchronization. The advantages of phase analysis also come from the fact that these methods are
applicable independent of whether the systems are chaotic or noisy, or even nonstationary.
The methods of PS analysis have been successfully applied to the cardiorespiratory system. Apart

from respiratory modulation of heart rate known as ‘respiratory sinus arrhythmia’ (RSA), previously,
it was believed that there is comparatively weak coupling between respiration and the cardiac rhythm,
and the resulting rhythms are generally not phase locked. However, when applying the phase analysis
techniques, Refs. [21,103] reveal long period of hidden cardiorespiratory synchronization during
spontaneous breathing. DiJerent locking ratios have been detected even for noisy and nonstationary
data.
Many further studies have been carried out on the coupling of cardiac rhythm with other systems.

Ref. [320] compares the cardioventilatory coupling (CVC) under the condition of spontaneous ven-
tilation and conditions where the ventilatory period is 5xed, and demonstrates that CVC does not
exist in the latter case. Comparison of CVC in diJerent anaesthetized animals and human subjects
has been carried out in Ref. [321]. Ref. [322] analyzes RSA with respect to respiratory phase and
observes PS between heartbeat and paced breathing with breath hold periods, showing that phase
analysis techniques might be useful for elucidating detailed mechanisms for RSA. It is also revealed
that the strength of PS is inversely related to the extent of RSA [323]. A quantitative analysis of
cardiorespiratory synchronization in healthy infants has found that the average degree of synchro-
nization varies with the age of the newborns [324]. During anaesthesia in rats, it is found that the
system passes reversibly through a sequence of diJerent cardiorespiratory phase-synchronized states
as the anaesthesia level changes, and the synchronization state may be used to characterize the depth
of anaesthesia [325]. The phase analysis techniques have also been used to study spatial synchro-
nization of oscillations in blood distribution systems [326]. The cardiac and respiratory oscillation at
diJerent sites of the system are strongly phase and frequency synchronized, while the spatial syn-
chronization of oscillations that originate locally is weaker, showing that the entire cardiovascular
system is characterized by the same dynamics.
Besides CVC, the cardiac rhythm may be aJected by other factors. Using phase analysis, a possible

link between the cardiac cycle and the timing of recurrent hiccups has been explored in Ref. [327].
Ref. [328] has demonstrated that the cardiorhythm can be synchronized by a weak external forcing,
such as periodic sequences of light and sound pulses, or aperiodic sequences of the variation of RR
intervals of another subject. An entrainment of cardiac and locomotor rhythms in humans has been
demonstrated in Ref. [329].
The phase analysis techniques have also been applied successfully to study synchronization of

biological neuron activities. Ref. [22] applies these methods to magnetoencephalography (MEG)
signals and records of muscle activity of a Parkinsonian patient. The analysis detects 1 : 1 PS between
the activity of certain brain areas, and 1 : 2 PS between the activity of these areas and the muscle
activity recorded by electromyography (EMG). These results reveal that the temporal evolution of
the peripheral tremor rhythms directly re8ects the time course of the synchronization of abnormal
activity between cortical motor areas and addresses a fundamental problem in neuroscience that
cortico-cortical synchronization is necessary for establishing coordinated muscle activity. A similar
analysis with MEG has later demonstrated interhemispheric PS and amplitude correlation of beta
oscillations in human subjects [330]. Ref. [331] has found that propofol anaesthesia induces phase
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synchronization changes in electroencephalography (EEG). The changes are diJerent in the alpha,
theta and beta frequency bands. The passband and location-speci5c behavior of these changes reveal
eJects of the anaesthesia to diJerent neural mechanisms. Phase analysis on the gamma-band of EEG
has shown that the degree of PS between frontal cortex and right parietal cortex is signi5cantly
increased during mental rotation with respect to rest [332], whereby musicians show signi5cant
higher degrees of synchronization than nonmusicians. Enhanced PS in EEG gamma band has also
been found for musicians while listening to music [333,334], and left-hemispheric dominance in the
degree of PS is observed in musicians, while right-hemispheric dominance is generally observed in
nonmusicians [332–334]. A quanti5cation of synchronization processes by coherence and phase and
its application to higher-level cognitive processes have been carried out [335] with EEG recorded
during word processing. The information transfer through the propagation of oscillations could be
veri5ed by phase analysis.
Application of the phase analysis to the optical topography obtained by using multi-channel

near-infrared spectroscopy has revealed spatially synchronized oscillations of changes in the con-
centration of oxy- and deoxy-hemoglobin throughout the occipital cortex of newborn infants [336].
Optical topography of oxy- and deoxy-hemoglobin concentration also reveals PS between the motor
cortex hemodynamics and periodic motor stimulation conditions [337]. Application of phase analy-
sis to the EEG of epilepsy patients has shown distinct diJerences in the degree of synchronization
between recordings from seizure-free intervals and those before an impending seizure, indicating an
altered state of brain dynamics prior to seizure activity [338]. Although other nonlinear analysis
methods [339] or information-theoretic methods [340] have also been applied to characterize and
detect neurodynamics changes leading to seizures, the analysis of PS is proved to be the most robust
one [341]. The success of phase analysis may be due to its complete insensitivity to amplitude, which
may provide a signi5cant source of error when there is no established relation between amplitudes
due to weak coupling or when the data is very noisy or nonstationary.
Readers interested in more details on the neurodynamics can refer to a few recent review arti-

cles in diJerent subjects. Ref. [342] presents a review on synchronized oscillations of the human
sensorimotor cortex. There it is pointed out that the development of re5ned signal analysis methods
are important factors that lead to an increasing interest in studies of sensorimotor oscillations. The
investigation proceeds from phenomenology to function and provides an interesting approach to ad-
dress questions in human motor physiology and pathophysiology. A review of the corticomuscular
coherence measured between EEG or MEG and EMG is presented in Ref. [343]. Ref. [344] reviews
the mechanisms of large-scale integration in brainweb that counterbalance the distributed anatomi-
cal and functional organization of brain activity to enable the emergence of coherent behavior and
cognition. Although the mechanisms involved in large-scale integration are still largely unknown,
it is argued that the most plausible candidate is the formation of dynamics links mediated by PS
over multiple frequency bands. Nonlinear time series analysis of epilepsy is summarized in Refs.
[339,341]. A review of the synchronization and rhythmic processes in physiology is presented in
Ref. [345]. Mathematical and physical techniques combined with physiology and medical studies
are addressing questions concerning the dynamics of the rhythmic processes, their interaction with
each other and with the external environment and controlling pathological rhythms, etc., and are
transforming our understanding of the rhythms.
In Ref. [24], it is shown that the noise-mediated oscillator in the electrosensitive cells in the

paddle5sh can be synchronized by a weak electric and=or magnetic 5eld. DiJerent types of noisy
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phase-locked regimes are observed. Synchronization behavior at diJerent time-scales can be observed
in coupled biological neurons possessing slow oscillation of membrane potential and fast spikes [346].
PS of chaotic oscillation has also been observed in other biological systems. Ref. [347] observes

synchronization phenomena in nephron–nephron interaction in rat kidneys. PS has been demonstrated
[31,348] in extended ecological systems—Canadian hare-lynx cycle—over large geographical regions.
Spatial PS leads to the emergence of complex chaotic traveling-wave structures which may be crucial
for species persistence.
Phase analysis methods have also been applied to solar activity. In Ref. [349], phase synchro-

nization of the sunspot cycle and a fast component of the solar inertial motion has been found
and con5rmed with statistical signi5cance in diJerent epochs. The result can be considered as a
quantitative support for the hypothesis that there is a weak interaction of gravity and solar activity.
A nonlinear interaction between the intensity oscillations of chromospheric bright points has been
identi5ed with phase analysis [350].
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