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EPIDEMICS ON NETWORKS 
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The importance of infection diseases 

 
 
 
More than 25% of annual 
deaths worldwide are 
caused by infection 
diseases (Morens et al, Nature 
2004) 
 
 

 
 
 
 
335 new diseases emerged 
from 1940 to 2004 (Jones et al, 
Nature 2008) 
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"Classical" modelling approach  
(Kermack and McKendrick, 1927) 
 
Basic assumption:  
Homogeneous mixing among individuals 
 
𝑦𝑦(𝑡𝑡) = “the total number who are ill” at time 𝑡𝑡 
(infectious, thus infectives) 
 
𝑥𝑥(𝑡𝑡) = “denotes the number of individuals still 
unaffected” (susceptibles) 
 
𝑧𝑧(𝑡𝑡) = “the number who have been removed by 
recovery and death” (recovered) 
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Generalized compartmental models  
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The need for network approaches: the small-world effect 
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Covid-19 cases on March 29, 2020 [from mapbox.cn] 
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The need for network approaches: heterogeneous networks 
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CONTAGION AND EPIDEMICS ON NETWORKS 
 
Probabilistic cellular automata are used to model the spread of infectious diseases 
over the network. 
 
 

• FINITE STATE SET: node (=individual) i  is in state Σ∈is },,2,1{ σ=  at time t 
 
e.g.:  
Σ={Susceptible, Infected, Recovered} 
in epidemics 

 
 
 

• LOCAL RULES (=CONTAGION MECHANISM): 

the next state i
ts 1+  depends (according 

to probabilistic rules) on i
ts  and on the 

state j
ts  of the neighbours  

 
 

from physicsworld.org 
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Example: the SIS process 
 
At time t , each node is 
 
• susceptible (S) (= it is healthy but can potentially be infected), or  

 
• infected (I) (= it is infected and capable of transmitting the infection) 

 
 
 
LOCAL RULES: 
 
At each time step (of length ∆): 
 

• infection: a node i  in state S becomes I with probability 
𝛽𝛽𝐼𝐼𝑖𝑖∆, i.e. proportional to the number iI  of infected 
neighbors 

 
• recovering: a node in state I returns S with probability 
𝛾𝛾∆ 

 
What is the global behaviour of the epidemics? 
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In a homogeneous (or almost homogeneous) 
network: 
 
 

• if 
><

≤
k
γβ          the fraction )(ty  of infected tends to 

0 (=the epidemic dies out) 
 

• if 
><

>
k
γβ           the fraction y  of infected increases 

with the transmission rate β  
 
 

 
This result is consistent with the classical epidemiology 
(Kermack and McKendrick, 1927): 
 
 
No epidemic can survive if the transmission 

rate is below the epidemic threshold. 
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Some technical details... 
 
 

Let ],0[)( NtY ∈  be the number of I and ]1,0[/)()( ∈= NtYty  their density (prevalence). 
 

))()(()()()1( tYNttYtYtY −∆Θ+∆−=+ βγ  
 
where )(tΘ  is the estimate of the average number of I among the neighbors of any S. 
 
Assuming )(tyk >=<Θ  (average n. of neighbors × prob. that a neighbor is I) we obtain (for 

0→∆ ) the classical SIS model: 
 

))(1)(()()( tytyktyty −><+−= βγ  
 
 
The non-trivial ( 0> ), asymptotically stable equilibrium )/(1 ><−= ky βγ  exists iff 

><> k/γβ . 
 

><= kc /γβ  is the epidemic threshold. 
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In a heterogeneous (e.g., scale-free) network 
(Pastor-Satorras and Vespignani, 2001): 
 

• the epidemic threshold is ><><= 2/ kkc γβ , 
then it may tend to 0 for large networks ( ∞→N ) 

 
•          )(ty  never vanishes, whatever the value of 

the transmission rate β  
 

• the nodes with larger degree are rare but have a 
large probability of being infected 

 
 
 
 
 

The epidemic is able to survive with 
arbitrarily small transmission rate β   

(but with vanishing prevalence y ). 
 
 
  

homogeneous 

heterogeneous 
 y  

β  
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Some technical details... 
 
 

How can we model the epidemic dynamics when the network is strongly inhomogeneous? 
  
We must model y  separately for each ensemble of nodes having the same degree k : 
 

))(1)(()()( tyttyty kkkk −Θ+−= βγ   ,  maxmin ,, kkk =  
 

=Θ )(tk (n. of neighbors × prob. that a neighbor is I) ><Σ== ktyhhPktyk hh /))()(()(~ . 
 
 
At the equilibrium ( 0=ky ) we obtain 

)~/(1
1

~
~

ykyk
ykyk βγβγ

β
+

=
+

=  

 
Thus the prevalence ky  grows with k  and tends to 1 as ∞→k  (=nodes with a very large number 

of connections are rare but, most likely, they are infected). 
 
The (global) prevalence is given by 
 

)()()( tykPty kkΣ=  
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Immunization of homogeneous/heterogeneous networks 
 
 

immunization = vaccination policy aimed at 
eradicating the epidemic (𝑦𝑦 → 0) 

 
𝑔𝑔 = fraction of vaccinated nodes 

 
 
If nodes to be vaccinates are selected at random:  
 

𝑔𝑔 = prob. that a randomly chosen susceptible is 
vaccinated 

 
𝛽𝛽�1 − 𝑦𝑦(𝑡𝑡)�    𝛽𝛽(1 − 𝑔𝑔)�1 − 𝑦𝑦(𝑡𝑡)� 

 
which is equivalent to replace 𝛽𝛽    𝛽𝛽(1 − 𝑔𝑔). 
 
 

What is the vaccination fraction 𝑔𝑔𝑐𝑐 above which the epidemic is eradicated? 
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Homogeneous networks (random vaccination) 
 
no epidemic below the threshold 𝛽𝛽 < 𝛽𝛽𝑐𝑐 = 𝛾𝛾

<𝑘𝑘>
    𝛽𝛽(1 − 𝑔𝑔) < 𝛾𝛾

<𝑘𝑘>
 

 
𝑔𝑔 > 𝑔𝑔𝑐𝑐 = 1 −

𝛾𝛾
𝛽𝛽 < 𝑘𝑘 >

 

 
If 𝑔𝑔 > 𝑔𝑔𝑐𝑐 nodes are vaccinated at random, the epidemic is eradicated (𝑦𝑦 → 0). 
 
 
 

Heterogeneous networks (random vaccination) 
 
no epidemic below the threshold 𝛽𝛽 < 𝛽𝛽𝑐𝑐 = 𝛾𝛾<𝑘𝑘>

<𝑘𝑘2>
    𝛽𝛽(1 − 𝑔𝑔) < 𝛾𝛾<𝑘𝑘>

<𝑘𝑘2>
 

 

𝑔𝑔 > 𝑔𝑔𝑐𝑐 = 1 −
𝛾𝛾 < 𝑘𝑘 >
𝛽𝛽 < 𝑘𝑘2 > 

 
If < 𝑘𝑘2 >→ ∞ (scale-free nets with large 𝑁𝑁) then 𝑔𝑔𝑐𝑐 → 1: need to vaccinate all 
population. 
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Heterogeneous networks  
(targeted vaccination) 

 
The weakness of highly heterogeneous networks (low 
resilience to targeted attacks) becomes a defensive 
strategy against spreading processes. 
 
Vaccinate a fraction g of nodes starting from those 

with highest degree. 
 
 
 
 
In Barabási-Albert networks, immunization is obtained if 
 

𝑔𝑔 > 𝑔𝑔𝑐𝑐 ≈ exp �
−2𝛾𝛾
𝛽𝛽𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

� 

 
not depending on network heterogeneity. 
 
 

Problem: how to identify the network (then the hubs) in a real-world population? 
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More complex models (just a glance…) 
 

● Non-elementary contagion mechanisms (saturation, mean-field dependence, …) 
 

● Birth/death/infection processes    ● Epidemics on adaptive networks 
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MODELS OF INFLUENCE PROPAGATION (“SOCIAL CONTAGION”) 
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They model the diffusion in a network-structured population of  
 
• information (news, rumor, opinion, …)  
• behavior (adoption of a product/service, 

food/smoking habits, …) 
 
The main mechanism of propagation is 
“social contagion” (word-of-mouth). 
 
Assumptions: 
 
• two states Σ={Inactive , Active} 
• progressive contagion {once turned to 

Active, a node remains such forever} 
 
Problems: 
 
• analysis: given the initial active set 𝑆𝑆0 

(“seed set”), find the final active set 𝑆𝑆∞ 
• optimization: find the initial active set 𝑆𝑆0, subject to the budget |𝑆𝑆0| = 𝑚𝑚 ≪ 𝑁𝑁, so to 

maximize the size |𝑆𝑆∞| of the final active set 
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Linear Threshold (LT) model 
 
A node becomes Active when the (weighted) count of Active neighbors exceeds a 
certain threshold. 
 
• Each node 𝑖𝑖 has a threshold 𝜃𝜃𝑖𝑖  >  0 
and is influenced by the incoming 
neighbors 𝑁𝑁𝑖𝑖 = {𝑗𝑗|𝑎𝑎𝑗𝑗𝑗𝑗 = 1} with a 
weight 𝑤𝑤𝑗𝑗𝑗𝑗 >  0. 
• If 𝐴𝐴𝑡𝑡 is the set of Active nodes at 
time 𝑡𝑡, then node 𝑖𝑖 becomes active at 
time 𝑡𝑡 + 1 if  
 

� 𝑤𝑤𝑗𝑗𝑗𝑗
𝑗𝑗∈𝑁𝑁𝑖𝑖⋂𝐴𝐴𝑡𝑡

≥ 𝜃𝜃𝑖𝑖 

 
 

 
Notice: the model is deterministic.  
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Independent Cascade (IC) model 
 
A node which becomes Active has exactly one chance to activate each Inactive 
neighbor. 
 
• Each node 𝑖𝑖 becoming active at time 𝑡𝑡 is given a single chance to activate each of its 
currently inactive outgoing neighbors 𝑁𝑁𝑖𝑖 = {𝑗𝑗|𝑎𝑎𝑖𝑖𝑖𝑖 = 1}. 
• The activation attempt succeeds with probability 𝑝𝑝𝑖𝑖𝑖𝑖, and 𝑗𝑗 will become Active at time 𝑡𝑡 + 1. 
 

 
 
Notice: the model is stochastic. 
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