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EPIDEMICS ON NETWORKS
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The importance of infection diseases
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Sars-CoV-2
is last (?) but not least...

Are you thinking of COVID-19? §

Animal viruses with Animal-to-human Amplification by

high host plasticity spillover of human-te-human
g viruses transmission
\
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Viruses
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Fruit bat

Johnson, C.K. et al. (2015) Spillover and pandemic properties of zoonotic viruses with high host plasticity.
Scientific Reports 5: 14830
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3.3 By 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and
combat hepatitis, water-borne diseases and other communicable diseases.
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"Classical" modelling approach
(Kermack and McKendrick, 1927)

agd

Basic assumption: a0 |
Homogeneous mixing among individuals

il o
y(t) = "the total number who are ill” at time t -
(infectious, thus infectives)

0at

x(t) = "denotes the number of individuals still

ang
unaffected” (susceptibles)
300 |
z(t) = "the number who have been removed by el
recovery and death” (recovered)
0o
di 3 -
at — T KTY T
ay Iy &
== kY —
@ T
y of infection.) This follows since the chance of an infection is proportional to
%% the number of infected on the one hand, and to the number not yet infected
dt ,J ©on the other.
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Generalized compartmental models
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The core SEPIA model for COVID-19
pased H

Post-latent (or Pre-symptomatic)
Infected individuals with symptoms
Asymptomatic (or paucisymptomatic)

Hospitalized @ (1 o C)n Q

Quarantined
Recovered 7,
Dead
| |
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| |
= | |
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-_———_——_—_—_—_—————— Are you thinking of COVID-19? pais

Gatto, Bertuzzo, Mari, Miccoli, Carraro, Casagrandi and Rinaldo (2020), PNAS 117: 10484




The need for network approaches: the small-world effect
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Fig. 3 ILeft the geographical spreading of the Black Death in the fourteenth century is described by a classical diffusive model [13, p. 105]; right
in the case of the 2003 SARS epidemic, the epidemic spreads over large distances rapidly, due to air transport [3]
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COVID-19 ST

Date Time: 2020-03-2917:12 g

. Tirme traved Playing
| Confirmed Recovered

T DET) )
685348

ssssssssafissssassassnnsssnsnssnnnsans

EThe sccamulated list

Covid-19 cases on March 29, 2020 [from mapbox.cn]
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The need for network approaches: heterogeneous networks

Fig. 2 The number of
proximity contacts in the
residents of a big city (left, [6])
or the number of sexual partners
in the previous 12 months
declared by the individuals of a
community (right, [8]) vary
greatly, suggesting a strong
heterogeneity in the
connectivity of the individuals
themselves
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CONTAGION AND EPIDEMICS ON NETWORKS

Probabilistic cellular automata are used to model the spread of infectious diseases
over the network.

e FINITE STATE SET: node (=individual) 7 is in state sley= {1,2,...,0} attime t

e.g.:
2={Susceptible, Infected, Recovered}

in epidemics

e LOCAL RULES (=CONTAGION MECHANISM):
the next state s;,; depends (according

to probabilistic rules) on S; and on the

state Stj of the neighbours

"o, O O
O ﬁ'yo ---- .

from phy5|csworld org
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Example: the SIS process

At time ¢, each node is
e susceptible (S) (= it is healthy but can potentially be infected), or

e infected (I) (= it is infected and capable of transmitting the infection)

LOCAL RULES:

At each time step (of length A):

infection: a node 7 in state S becomes I with probability
BL;A, i.e. proportional to the number I; of infected

neighbors

recovering: a node in state I returns S with probability
YA

What is the global behaviour of the epidemics?
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In a homogeneous (or almost homogeneous)
network:

o if f< 7}; > the fraction y(t) of infected tends to
<k>

0 (=the epidemic dies out)

o if > Z > the fraction y of infected increases
<K>

with the transmission rate f

C‘d This result is consistent with the classical epidemiology
Af-eeeiimremmise i e oo o -2 2220 (Kermack and McKendrick, 1927):
\ No epidemic can survive if the transmission
rate is below the epidemic threshold.
o 1
3fek> 2
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Some technical details...

Let Y(t) €[0, N] be the number of I and y(t) =Y (t)/ N €[0,1] their density (prevalence).
Y(t+1)=Y(t)-yAY(t)+ PAO(t)(N - Y (2))
where @(f ) is the estimate of the average number of I among the neighbors of any S.

Assuming ® =<k > y(t) (average n. of neighbors x prob. that a neighbor is I) we obtain (for
A — 0) the classical SIS model:

y(O) =)+ <k>y@)1-y())

The non-trivial (>0), asymptotically stable equilibrium y = - 4 / ( ﬁ <k >) exists iff
B>y <k>.

B, =y/ <k > is the epidemic threshold.
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In a heterogeneous (e.g., scale-free) network

(Pastor-Satorras and Vespignani, 2001). /
e the epidemic threshold is f.=y<k>/< k>,
then it may tend to O for large networks (N — ) " \\’// e\
—> y(¢) never vanishes, whatever the value of /A‘\

the transmission rate [

e the nodes with larger degree are rare but have a 7 k \
large probability of being infected /
04 - . - .
03
oz | The epidemic is able to survive with
yoo arbitrarily small transmission rate g
0.1 F (but with vanishing prevalence y).
0.0 -
0.0 02 ,3 0.4 0.6
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Some technical details...

How can we model the epidemic dynamics when the network is strongly inhomogeneous?

We must model y separately for each ensemble of nodes having the same degree k:

Ve @) == () + O (O)A=yr () , k=kpnins---skmax

O, (¥) =(n. of neighbors x prob. that a neighbor is I)=ky(¢t) = k(Z,hP(h)y, (¢))/ <k >.

At the equilibrium (¥ = 0) we obtain
y+pky 1+ y /(Pky)

Thus the prevalence Y grows with k and tends to 1 as k —> o0 (=nodes with a very large number
of connections are rare but, most likely, they are infected).

Yk

The (global) prevalence is given by

Y(t) =2 LK)y (1)
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Immunization of homogeneous/heterogeneous networks

immunization = vaccination policy aimed at
eradicating the epidemic (y — 0)

g = fraction of vaccinated nodes

If nodes to be vaccinates are selected at random:

g = prob. that a randomly chosen susceptible is
vaccinated

which is equivalent to replace p ——> B(1 — 9).

What is the vaccination fraction g. above which the epidemic is eradicated?
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Homogeneous networks (random vaccination)

no epidemic below the threshold 8 < B, = !? —> B(1-g)< !?
)4

>ge=1——"

If g > g. nodes are vaccinated at random, the epidemic is eradicated (y — 0).

Heterogeneous networks (random vaccination)

no epidemic below the threshold g < g, = =% > Bl -g) <2

<kZ2> <k2>

y <k>
B <k?>

g>9gc.=1

If <k?>- o (scale-free nets with large N) then g. - 1: need to
population.

vaccinate all
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Heterogeneous networks
(targeted vaccination)

The weakness of highly heterogeneous networks (low
resilience to targeted attacks) becomes a defensive
strategy against spreading processes.

Vaccinate a fraction g of nodes starting from those
with highest degree.
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More complex models (just a glance...)

e Non-elementary contagion mechanisms (saturation, mean-field dependence, ...)

e Birth/death/infection processes e Epidemics on adaptive networks
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FIG. 3. Bifurcation diagram of the density of the infected i* as
a function of the infection probability p for different values of
the rewiring rate w. In each diagram i* has been computed
analytically from Eqs. (2)—4) (thin lines). Along the stable
branches these results have been confirmed by the explicit

Piccardi and Casagrandi (2003), Springer Gross et al (2006) 881 96208701
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MODELS OF INFLUENCE PROPAGATION ("SOCIAL CONTAGION")
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They model the diffusion in a network-structured population of

e information (news, rumor, opinion, ...)

e behavior (adoption of a product/service,
food/smoking habits, ...)

The main mechanism of propagation is
“social contagion” (word-of-mouth).

Assumptions:
e two states X={Inactive , Active}
e progressive contagion {once turned to

Active, a node remains such forever}

Problems:

e analysis: given the initial active set S,
(“seed set”), find the final active set S

Non-adopter @ Old adopter

@ Recent adopter
Link between adopter and recent adopter

Fig. 1. Diffusion of Yahoo! Go over time. (A—C and D-F) Two subgraphs of the
Yahoo! IM network colored by adoption states on July 4 (the Go launch date),
August 10, and October 29, 2007. For animations of the diffusion of Yahoo! Go
over time see Movies S1 and S2.

e optimization: find the initial active set S,, subject to the budget |S,| =m « N, so to

maximize the size |S,| of the final active set

#OUTEC,
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Linear Threshold (LT) model

A node becomes Active when the (weighted) count of Active neighbors exceeds a
certain threshold.

5
! 3
e Each node i has a threshold 6; > 0 : Q"] ()
and is influenced by the incoming s/
neighbors N; = {j|a;; = 1} with a 4@ _
e If 4, is the set of Active nodes at
time t, then node i becomes active at

timet+1if
2 Wji > Hi
JEN;NA;

Notice: the model is deterministic.
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Independent Cascade (IC) model

A node which becomes Active has exactly one chance to activate each Inactive
neighbor.

e Each node i becoming active at time t is given a single chance to activate each of its
currently inactive outgoing neighbors N; = {j|a;; = 1}.
e The activation attempt succeeds with probability p;;, and j will become Active at time ¢ + 1.
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Notice: the model is stochastic.
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