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LINK PREDICTION

Networks are wused to model interactions
observed in field/laboratory experiments, or
obtained through data processing, etc.

Many existing interactions might be overlooked
(also, a few observed interactions might be
artificial).

Main assumption: the observed network A°

is @ "noisy" observation of a true network
Atrue_

Problem: reconstruct A**¢ given A°.

Are They Your Friends Too?

These people now have 1 or more friends in common with you.

Applications:

e find missing links (perhaps suggesting ad-hoc
experiments)

e delete spurious links

e in time-varying networks, predict future links (e.g.,
who will be your future friends?)
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Finding missing links: Similarity-based algorithms

The observed network A° (undirected, unweighed) has N nodes (i =1,2,..,N) and L
observed links (a;; = 1).

S is the set of non observed links (a;; = 0), whose cardinality is (N(A;_l) — L).

Assumption: the set § contains missing links (=existing but not observed).

The more two nodes are "similar"”, the more is the likelihood they are connected

define a similarity score s;; for each node pair (i, j)

define a threshold §
a non observed link is a missing link if s;; > §

(optional: an observed link is a spurious link if s;; <5 <5)

/ Similarity \

Node attributes Network topology
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How to quantify the structural (topological) similarity of nodes (i,j) ?

e Number of common neighbours: s;; = |B; n B;| = (4?);;=n. of length-2 paths

... many variations (normalizations e.g. by functions of the degrees k;,k;)

generalization: consider paths (i,j) longer than 2 (Katz index)

sij = BAyj + B2(A%)y; + B3 (A%)j + - =[U = BAT =1] , 0<B <1/ Apax(4)

... Katz index truncated at some power

Preferential attachment index: s;; = k;k;

e Resource allocation index: s;; = hes;ns)) 1/kh

...many others
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RECOMMENDER SYSTEMS

U = {uy,u,, .., u,} : set of users 0 = {04,0,,...,0,} : set of objects

The set of objects owned by each user u; is coded by the
bipartite network B = [b;;]:

b;; = 1 if u; owns o, b;; = 0 otherwise

e user degree (number of objects owned by i):

k) = ) by

e object degree (number of users owning j):
k(o)) = E_bi,-
l

Problem: assuming u; likes the objects she/he owns (=not purchased at random), predict
(and recommend) which more object(s) she/he could like.
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A naive solution (global ranking method): recommend the objects o; with the largest
degree k(o;) (=the object owned by the largest number of users).

The recommendation list is the same for all users (no
personalization):

1st: apple (k = 4)

2nd: cheese, spaghetti (k = 3)
4th: ham, book, laptop (k = 2)

The network is not used.
—

A less naive solution (content based filtering): define a similarity among objects,
and recommend to user u; the objects o; most similar to those already owned.

This is a personal recommendation system - still the network is not used.
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In collaborative filtering, the main assumption is that similar users like similar
objects.

The score assigned to the (non-existing) pair (u;, 05):

m
~ Spbyj ¥ Sppbyj 4+ Simbmy  2i=1 Subyj
ij =

- m
Si1 T Sjp +t Sim 1=1 Sil

This is a link prediction procedure on a bipartite
network.

How to quantify the similarity between users i, ?
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Two examples (among the simplest ones) of user similarity:

e topological similarity: common neighbours = n. of objects in common:

n
Sip = z bijby;
j=1

e rating-base similarity: users give a score (e.g., 1 to 5 stars) to the objects they
own:
rn=>~"0n T2 - Tin)

r;; is the score given to object j by user i.

The more the vectors r;, n, are close each
other (=same preferences), the more users i,!
are similar.

"Cosine" similarity:

AR

Si1 =
o nlinl
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ADVANCED NETWORK MODELS
(JUST A GLANCE...)
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TEMPORAL NETWORKS (links vary in time)
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MULTILAYER NETWORKS (nodes are connected by different sets of intra-layer links,
plus possibly inter-layer links)
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HIGHER-ORDER INTERACTIONS (HYPERGRAPHS) (node-to-node connections are not
only pairwise)
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