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"REGULAR" NETWORKS

Trees and lattices...
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... are very rarely representative of real-world networks.
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"RANDOM" (Erddés-Rényi) NETWORKS

This is a random (Erdds-Rényi) network,
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“G(N,L) model”

Poisson Distribution

For large N, the degree is Poisson-distributed with
<k>=2L/N:
‘3‘:—: n H 1] H
a > the "typical" scale of node degree is k; =<k >
—> node degrees have small fluctuations around < k >
——> the network is “almost homogeneous”
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More on Erdos-Rényi networks...
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Figure &. Evolution of a random graph. Given 10 isolated
nodes in (a}), one connects every pair of nodes with proba-
bility (b} p =0.1,{c) p=0.15 and (d) p = 0.25, respectively.

An alternative procedure (“G(N,p) model”):

Start from a graph with N nodes and no
links, and connect each pair i, with a
given probability p.

Then the degree distribution is binomial:

Py = (M )pra—py ik

with (k) = p(N — 1).

#OUTEC,
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Some properties (for N - « and fixed (k)): Poisson Distribution

The degree is Poisson distributed, with < k >= p(N —1):

P(k)

—<k> < k >k
k!

Pk)=e

. The network has a giant component O(N) if (k) >1 (p > 1/N).

. The average distance d =log N /log <k > grows “slowly” with N (“small-world” effect) —
“Large” networks (=large N) have a relatively small average distance.

. The clustering coefficient C=p =<k >/N tends to 0 as N grows — “Large” networks
have vanishing clustering.

B 7 Carlo Piccardi - Politecnico di Milano - ver. 27/09/2024 5




SCALE-FREE (Barabasi-Albert) NETWORKS

This is a scale-free network, obtained by
adding one node at a time, and connecting it
preferentially (=with higher probability) to
nodes with higher degree (Barabasi-Albert
algorithm).

The network contains few very connected
nodes ("hubs") and many scarcely connected
nodes.

Power-Law Distribution

: ...ml T T ....H T ....H T .......
1F ;
' For large N, the degree distribution is a power-law function
0.1 3 P(k) ~ k—a:
% 0.01-.:- q
g g > node degrees have large fluctuations around < k >:
000tk : there is no "typical" scale of node degree
0.0001F 7 ]
> the network is strongly heterogeneous
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Some examples of (cumulative) degree distribution:

H}O AL Rl BRI BRI R

=

10
ot
l(r"“:'
(c) World-Wide Web
-3 IIIIIlIJ |II||.|.|.I |II|l|.|.|J |II||.|.|.I L1
10 5 ? 4 &
10 107 10 10

| L vl
10° 10
Scaled degree, k/z

107%5

the air transportation network

10”

I IIIIIII| I IIIIIII| I IIII|'|T| TTTT

]

1 IIIIIII| ] IIIIIII| ] I|||I_I_I_| L1111

(d) Internet

-

10 100 1000

1e-01 1e+00

1e-02

1e-03

1e-04

1 5 50 500 5000
Facebook (721 million nodes, May 2011)

p Carlo Piccardi - Politecnico di Milano - ver. 27/09/2024




a 10% . b 10%

s £

a

= 1["1 - - E: 1[]'1 3 E

= =) :

3 R

fE 102 3 E 102 ¢ E

o - 1T -

g 12 |

E -3 : ™ - E -3 L E

= 107F & Females - 1 2 10 E O Females A

S A Males 3 - A Males ]
1:::—4 I I L1 a gl 1 1 TR R B 1[]—‘1- L L 111l L L1yl N MR

100 101 102 100 107 102 103
Number of partners, k Total number of partners, k,

Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, . in the
previous 12 months. Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear,
indicating scale-free power-law behaviour, Moreaver, the two curves are roughly parallel, indicating similar scaling exponents, For
females, ce=2.54 £0.2 in the range k= 4, and for males, = 2.31x0.2 in the range k> 5. b, Distribution of the total number of part-
ners k, over respondents’ entire lifetimes. For females, e, =2.120.3 in the range k= 20, and for males, e, =1.6%0.3 in the
range 20 < ky, < 400, Estimates for females and males agree within statistical uncertainty.
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More on “scale-free” networks...

Barabasi-Albert (BA) algorithm (1999) is inspired by the WWW growth:

. initialization: start with my nodes (arbitrarily connected)

. growth: at each step, add a new node i with m < m new links connecting 7 to m existing
nodes.

. preferential attachment: attach the new m links preferentially (=with higher probability) to
nodes with high degree (“rich get richer”): that is, let the probability that a link of the new
node i connects to the existing node j be k;/X,ky,.
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Then for N > «:

. the average degree tends to <k>=2m and the

degree distribution to the power-law P(k) = K3

. <k*> and thus the variance o2

diverge (P(k) has a “heavy tail”)

. the average distance tends to d = logN /loglogN
(M“small-world” effect)

. the clustering coefficient C vanishes as C =
(logN)2 /N - 0

:<k2>—<k>2

Power-Law Distribution
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Computing the degree distribution (the "continuum approach"):
e After t steps, the network has m, + t nodes and = mt links.
o At each step t, the prob. for node i to be selected by one of new links is k;/ Y., k;.
e Approximating the degree k; with a ccz;{tinuous;{variakble, its increase rate is
i i i

FEE I RET:
because (X k;)/2 =mt is the number of links.

e Solving the differential equation for a node inserted at time t; with k;(t;) = m:

() — m(ti)o.s

l

10°
SINGLE NETWORK

Notice: In the continuum approach, all
nodes evolve exactly in the same way (k; =
t%5), but older nodes (=smaller t;) have
larger degree.

104

< the degree of a few nodes in an actual

(i.e. randomized) realization of a BA
network
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e The cumulative degree distribution
2

_ m-t
P(k) = prob(k; = k) = prob(t; < %z

e Nodes are inserted uniformly in time, thus the fraction of nodes inserted before m?t/k? is
m2t> _mft m?

P(k) = prob (ti < wz )= ?/t =77

and the degree distribution is

The continuum approach correctly predicts P(k) =~ k3. The exact degree distribution
of a BA network is proved to be

2m(m + 1)
k(k +1)(k + 2)

P(k) =
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Two (of the many) generalizations of the Barabasi-Albert algorithm:

e Dorogovtsev-Mendes-Samukhin (DMS) model, to get a power law degree
distribution P(k) = kY with arbitrary y € (2, ).

Modifies the preferential attachment probability that a link of the new node i connects to the
existing node j

k; kj+ko
to
Xhkn Yh(kn+ko)

from

By choosing a value k, € (—m, ), it is proved that y = 3 + k,/m.

e Holme-Kim (HK) model, to get a non-vanishing (large) clustering coefficient C.

Forces the creation of triangles by
alternating (in a probabilistic fashion)
preferential attachment steps and
triad formation steps.
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"SMALL-WORLD" (Watts-Strogatz) NETWORKS

In typical real-world networks, the average distance| d =< d,-j >|turns out to be
surprisingly small.
Network N L ks d» Armax
Internet 192,244 602,066 6.34 698 26
Lo L. WWWw 325,729 1,497,134 4.60 1.27 a3
Empirically, it is observed
that Power Grid 4,941 6,594 2.67 18.99 46
Mobile-Phone Calls 36,595 01,826 2.5 1.72 39
d ~log N |
Email 97,194 103,731 81 5.88 18
i e d increases "S|OW|y" W|th Science Collaboration 23,133 93,437 8.08 D35 15
N ("small-world" effect). Actor Network 702,388 29,397,908 83.71 3.91 14
Citation Netwaork 449,673 4,707,958 10.43 11.21 42 9
o
(@]
E. Coli Metabolism 1,039 5,802 5.58 2.98 8 'g
QO
Protein Interactions 2,018 2,930 2.90 .61 14 §
T 14
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Watts and Strogatz (1998) demonstrated that adding a few long-distance
connections to a regular network yields a dramatic decrease of d.

Start from a regular “ring” graph with N nodes, where each node is connected to the m right-
neighbors and to the m left-neighbors (=each node has exactly degree 2m).

The network has large clustering coefficient
(typical of “regular” networks)

_3m-3
dm -2

C

and the average distance is also large (grows
linearly with N)

_N
4dm

d
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“Rewiring”: Scan all nodes i =1,2,..., N. Consider all the links i <> j connecting i to its right
neighbors and, with probability p, break the connection to j and redirect it to a randomly
selected node.

If p is small, the local properties are not
significantly modified:

. the degree distribution remains concentrated
around the average degree (unchanged!) < k >=2m

. the clustering coefficient C does not vary
significantly

But the birth of few, “long distance” connections is
sufficient to vyield a dramatic decrease of the
average distance, which passes from d ~ N to

d =~log N
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Regular Small-world Random

Increasing randomness

In a suitable p interval, the network
mimics many typical real-world networks,
i.e., at the same time:

e the clustering coefficient is large

e the average distance is small

p = fraction of links rewired
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STOCHASTIC BLOCK-MODEL

It is a “block” generalization of Erdés-Rényi networks.

@ A

Q=1.0

Q=0.5

Q=0.0

The model is completely defined by:

e the number of nodes N and the number of groups (blocks) B

e a partition of the nodes, i.e., the group membership b; of each node i

e the probabilities p,; = p,, that a node in group r is linked to a node in group s
(including r = s)
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It is a general, versatile model for large-scale networks, suitable to parameter
identification via statistical inference techniques.

Special cases:

Graph Adjacency Matrix Blockmodel
a) =
e Erdbs-Renyi network, 1 block: il I ) | %
p.s = p for any node pair E "%f : g 2
= : ie 2 g
:-'... I |_ o L%
: b) - z
e Modular (community structure), g blocks: Y I [ o0 ow on NE
large intra-block connectivity p,., 5 A -1 ? oo I oo oo B
small inter-block connectivity p,; (r #s) E pek: % oo oo [ o %
I b AT ST ; §

. c

e Core-periphery structure, 2 blocks: ;, . I ' £
large intra-core connectivity p,; £ i - : : ? E
small intra-periphery connectivity p,, 2 . ¥ =2 : 3 i :
intermediate core-periph. connectivity p,, = pyq E N I ALt E,

Faskowitz et al, Sci.Rep 2018
e Bipartite network, 2 blocks:
null intra-block connectivity p;; = p,, =0
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