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"REGULAR" NETWORKS 
 
Trees and lattices... 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

... are very rarely representative of real-world networks. 
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"RANDOM" (Erdös-Rényi) NETWORKS 
 
 
This is a random (Erdös-Rényi) network, 
obtained by letting 100=N  and connecting 

300=L  randomly extracted pairs, hence 
6100/3002 =×>=< k . 

 
“𝐺𝐺(𝑁𝑁, 𝐿𝐿) model” 

 
 

 
 
 
For large N , the degree is Poisson-distributed with 

NLk /2>=< : 
 
  the "typical" scale of node degree is >=< kki  
  node degrees have small fluctuations around >< k  
 

       the network is “almost homogeneous” 
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More on Erdös-Rényi networks... 
 

 
 
 
 
 
An alternative procedure (“𝐺𝐺(𝑁𝑁, 𝑝𝑝) model”): 
 
Start from a graph with N  nodes and no 
links, and connect each pair ji,  with a 
given probability p. 
 
Then the degree distribution is binomial: 
 

𝑃𝑃(𝑘𝑘) = �𝑁𝑁 − 1
𝑘𝑘 �𝑝𝑝𝑘𝑘(1 − 𝑝𝑝)𝑁𝑁−1−𝑘𝑘 

 
with 〈𝑘𝑘〉 = 𝑝𝑝(𝑁𝑁 − 1). 
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Some properties (for 𝑁𝑁 → ∞ and fixed 〈𝑘𝑘〉): 
 
 

• The degree is Poisson distributed, with )1( −>=< Npk : 
 

!
)(

k
kekP

k
k ><

= ><−  

 
 

• The network has a giant component 𝑂𝑂(𝑁𝑁) if 〈𝑘𝑘〉 > 1 (𝑝𝑝 > 1/𝑁𝑁). 
 
 

• The average distance ><≅ kNd log/log  grows “slowly” with N  (“small-world” effect) → 
“Large” networks (=large N ) have a relatively small average distance. 

 
 

• The clustering coefficient NkpC />≅<=  tends to 0 as N  grows → “Large” networks 
have vanishing clustering. 
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SCALE-FREE (Barabási-Albert) NETWORKS 
 
This is a scale-free network, obtained by 
adding one node at a time, and connecting it 
preferentially (=with higher probability) to 
nodes with higher degree (Barabási-Albert 
algorithm). 
 
The network contains few very connected 
nodes ("hubs") and many scarcely connected 
nodes. 
 

 
 
 
For large N , the degree distribution is a power-law function 

α−≈ kkP )( : 
   
  node degrees have large fluctuations around >< k : 
   there is no "typical" scale of node degree 
 

       the network is strongly heterogeneous 



 

 
Carlo Piccardi – Politecnico di Milano – ver. 27/09/2024  7 

Some examples of (cumulative) degree distribution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                the air transportation network                           Facebook (721 million nodes,  May 2011) 
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More on “scale-free” networks... 
 
Barabási-Albert (BA) algorithm (1999) is inspired by the WWW growth: 
 

• initialization: start with 0m  nodes (arbitrarily connected) 
 

• growth: at each step, add a new node i  with 0mm ≤  new links connecting i  to m  existing 
nodes. 

 
• preferential attachment: attach the new m  links preferentially (=with higher probability) to 

nodes with high degree (“rich get richer”): that is, let the probability that a link of the new 
node i  connects to the existing node j  be hhj kk Σ/ . 
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Then for ∞→N : 
 
 

• the average degree tends to mk 2>=<  and the 
degree distribution to the power-law 3)( −≈ kkP  
 
 

• >< 2k  and thus the variance 222 ><−>=< kkσ  
diverge (𝑃𝑃(𝑘𝑘) has a “heavy tail”) 
 
 

• the average distance tends to 𝑑𝑑 ≈ log𝑁𝑁 / log log𝑁𝑁 
(“small-world” effect)  
 
 

• the clustering coefficient C  vanishes as 𝐶𝐶 ≈
(log𝑁𝑁)2 /𝑁𝑁 → 0 
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Computing the degree distribution (the "continuum approach"): 
 

• After 𝑡𝑡 steps, the network has 𝑚𝑚0 + 𝑡𝑡 nodes and ≅ 𝑚𝑚𝑚𝑚 links. 
 

• At each step 𝑡𝑡, the prob. for node 𝑖𝑖 to be selected by one of new links is 𝑘𝑘𝑖𝑖/∑ 𝑘𝑘𝑗𝑗𝑗𝑗 . 
 

• Approximating the degree 𝑘𝑘𝑖𝑖 with a continuous variable, its increase rate is 
𝑑𝑑𝑘𝑘𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑚𝑚
𝑘𝑘𝑖𝑖
∑ 𝑘𝑘𝑗𝑗𝑗𝑗

=
𝑘𝑘𝑖𝑖
2𝑡𝑡

 

because (∑ 𝑘𝑘𝑗𝑗)/2 =𝑗𝑗 𝑚𝑚𝑚𝑚 is the number of links. 
 

• Solving the differential equation for a node inserted at time 𝑡𝑡𝑖𝑖 with 𝑘𝑘𝑖𝑖(𝑡𝑡𝑖𝑖) = 𝑚𝑚: 

𝑘𝑘𝑖𝑖(𝑡𝑡) = 𝑚𝑚 �
𝑡𝑡
𝑡𝑡𝑖𝑖
�
0.5

 

 
 
Notice: In the continuum approach, all 
nodes evolve exactly in the same way (𝑘𝑘𝑖𝑖 ≈
𝑡𝑡0.5), but older nodes (=smaller 𝑡𝑡𝑖𝑖) have 
larger degree. 
 
⟸ the degree of a few nodes in an actual 
(i.e. randomized) realization of a BA 
network  
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• The cumulative degree distribution 

𝑃𝑃�(𝑘𝑘) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑘𝑘𝑖𝑖 ≥ 𝑘𝑘) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑖𝑖 ≤
𝑚𝑚2𝑡𝑡
𝑘𝑘2

) 
 

• Nodes are inserted uniformly in time, thus the fraction of nodes inserted before 𝑚𝑚2𝑡𝑡/𝑘𝑘2 is 

𝑃𝑃�(𝑘𝑘) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝑡𝑡𝑖𝑖 ≤
𝑚𝑚2𝑡𝑡
𝑘𝑘2

� =
𝑚𝑚2𝑡𝑡
𝑘𝑘2

𝑡𝑡� =
𝑚𝑚2

𝑘𝑘2
 

 
and the degree distribution is  
 

𝑃𝑃(𝑘𝑘) = −
𝑑𝑑𝑃𝑃�(𝑘𝑘)
𝑑𝑑𝑑𝑑

= 2𝑚𝑚2𝑘𝑘−3 
 
 
 
The continuum approach correctly predicts 𝑃𝑃(𝑘𝑘) ≈ 𝑘𝑘−3. The exact degree distribution 
of a BA network is proved to be 
 

𝑃𝑃(𝑘𝑘) =
2𝑚𝑚(𝑚𝑚 + 1)

𝑘𝑘(𝑘𝑘 + 1)(𝑘𝑘 + 2)
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Two (of the many) generalizations of the Barabasi-Albert algorithm: 
 
●  Dorogovtsev-Mendes-Samukhin (DMS) model, to get a power law degree 
distribution 𝑃𝑃(𝑘𝑘) ≈ 𝑘𝑘−𝛾𝛾 with arbitrary 𝛾𝛾 ∈ (2,∞). 
 
Modifies the preferential attachment probability that a link of the new node 𝑖𝑖 connects to the 
existing node 𝑗𝑗  
 

from   
𝑘𝑘𝑗𝑗

∑ 𝑘𝑘ℎℎ
       to   

𝑘𝑘𝑗𝑗+𝑘𝑘0
∑ (𝑘𝑘ℎ+𝑘𝑘0)ℎ

 

 
By choosing a value 𝑘𝑘0 ∈ (−𝑚𝑚,∞), it is proved that 𝛾𝛾 = 3 + 𝑘𝑘0/𝑚𝑚.  
 
 
●  Holme-Kim (HK) model, to get a non-vanishing (large) clustering coefficient 𝐶𝐶. 
 
 
Forces the creation of triangles by 
alternating (in a probabilistic fashion) 
preferential attachment steps and 
triad formation steps. 
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"SMALL-WORLD" (Watts-Strogatz) NETWORKS 
 
In typical real-world networks, the average distance

 

>=< ijdd  turns out to be 
surprisingly small. 

 
 
 
 
 
Empirically, it is observed 
that  
 

Nd log≈  
 
i.e. d  increases "slowly" with 
N  ("small-world" effect). 
  

B
ar
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i, 
20

16
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Watts and Strogatz (1998) demonstrated that adding a few long-distance 
connections to a regular network yields a dramatic decrease of d . 
 
 
Start from a regular “ring” graph with N  nodes, where each node is connected to the m  right-
neighbors and to the m  left-neighbors (=each node has exactly degree m2 ). 

 
 
The network has large clustering coefficient  
(typical of “regular” networks)  
 

24
33

−
−

=
m
mC  

 
and the average distance is also large (grows 
linearly with N ) 
 

m
Nd

4
=  
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“Rewiring”: Scan all nodes Ni ,,2,1 = . Consider all the links ji ↔  connecting i  to its right 
neighbors and, with probability p, break the connection to j  and redirect it to a randomly 
selected node. 
 

 
If p  is small, the local properties are not 
significantly modified: 
 

• the degree distribution remains concentrated 
around the average degree (unchanged!) mk 2>=<  
 

• the clustering coefficient C  does not vary 
significantly 
 
But the birth of few, “long distance” connections is 
sufficient to yield a dramatic decrease of the 
average distance, which passes from Nd ≈  to 
 
    Nd log≈  
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p = fraction of links rewired 
 
 
 
 
 

 
 
In a suitable 𝑝𝑝 interval, the network 
mimics many typical real-world networks, 
i.e., at the same time: 
 
• the clustering coefficient is large  

 
• the average distance is small 
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STOCHASTIC BLOCK-MODEL 
 
It is a “block” generalization of Erdös-Rényi networks. 
 

 
 
The model is completely defined by: 
 
• the number of nodes 𝑁𝑁 and the number of groups (blocks) 𝐵𝐵 
• a partition of the nodes, i.e., the group membership 𝑏𝑏𝑖𝑖 of each node 𝑖𝑖 
• the probabilities 𝑝𝑝𝑟𝑟𝑟𝑟 = 𝑝𝑝𝑠𝑠𝑠𝑠 that a node in group 𝑟𝑟 is linked to a node in group 𝑠𝑠 

(including 𝑟𝑟 = 𝑠𝑠) 
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It is a general, versatile model for large-scale networks, suitable to parameter 
identification via statistical inference techniques.  
 
Special cases: 
 

• Erdös-Rényi network, 1 block: 
𝑝𝑝𝑟𝑟𝑟𝑟 = 𝑝𝑝 for any node pair 

 
 
 

• Modular (community structure), 𝑞𝑞 blocks: 
large intra-block connectivity 𝑝𝑝𝑟𝑟𝑟𝑟 
small inter-block connectivity 𝑝𝑝𝑟𝑟𝑟𝑟 (𝑟𝑟 ≠ 𝑠𝑠) 

 
 

• Core-periphery structure, 2 blocks: 
large intra-core connectivity 𝑝𝑝11 
small intra-periphery connectivity 𝑝𝑝22 
intermediate core-periph. connectivity 𝑝𝑝12 = 𝑝𝑝21 

 
              Faskowitz et al, Sci.Rep 2018 

• Bipartite network, 2 blocks: 
null intra-block connectivity 𝑝𝑝11 = 𝑝𝑝22 = 0 
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